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16 Abstract  

We  examine  self-selection  in  polychotomous  choice  models  that construct attribute  values  for  each 

alternative  conditioned on  observed choices.  Using observations  made  only  when  the  alternative  

was  chosen  ignores  private  information  which  was  a  basis  for  the  decision,  biasing resulting  

estimates.  We  suggest  a  full  information  maximum likelihood procedure  that performs we ll  at  the  

extremes  of  the  choice  set  in  our  sample,    and use    an    “identification    at infinity”    weighting to 

identify  levels.  We  apply  the  model  to understanding fishing location  choice  in  the  economically 
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23 significant Bering Sea pollock fishery, where expected catches at each location are  constructed  

from harvests observed when that location is chosen. 24 
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25 1. INTRODUCTION 

In  econometric  models  of  discrete  choice,  agents  choose  between  options  based on  the  expected  

attributes  of  the  alternatives  available  to  them.  We  investigate  a  class  of  models  where  certain 

attributes  are  only  observed for  the  alternative  actually  selected by  the  agent,  and show how private  

information    impacts    the    agent’s    selection    criteria    and the  data  a researcher  observes.  An  example  

is  the    eponymous    “Roy    Model”    of    migration    (Roy  1951), where  a  researcher  may  hypothesize  

workers  choose  their  eventual  state  of  residence  depending on  the  expected wages  they  will  receive  

across  locations.  Because  they  only  observe  the  realized wages  in the  state  chosen,  the  researcher  

creates  proxies f rom  observed data  for  the  other  locations  (Dahl  2002,  Bertoli  et  al.  2013),  in  order  

to compare  different  geographic  states.  Similar  intuition  is  applied in  research  explaining how  

households  trade  off  climate  amenities  and expected wages  (Sinha  et  al.  2018),  how expected 

wages  explain human  migration  (Parey  et  al.  2017),  how recreators  choose  between  recreational  

sites  when  some  site  amenity  data  are  missing (Kinnell  et  al.  2006),  how child care  costs  impact  

female  labor  supply  (Kornstad &  Thoresen  2007),  or  how  teacher  quality  and expected test scores  

affect  school  choice  and teacher  choice  (Jacob  &  Lefgren  2007),  among others.  In  fisheries  models  

of  location  choice,  fishers  choose  where  to fish  based in  part  on  their  expectations o f  catch  across  

polychotomous  locations.  

To model  the  spatial  decisions o f  fishers,  existing methods  use  observation-conditional  catch  data  

to predict  expected  catch  at various  locations.  A  researcher  only  observes  catches  at the  locations  

chosen  by  the  fishers. To  create  proxies,  researchers  frequently  regress  researcher-observed  

catches  on  chosen  covariates  (such  as  fisher  characteristics  or  lagged catches),  and then  use  the  

parameter  estimates  from  the  catch  equation  model  to  predict  unobserved catches  for  locations.  
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48 Examples  of  such  models  evaluate  how fishers  trade  off  catch  and cost expectations  (Eales  & 

Wilen  1986),  vessel  willingness  to  avoid common-pool  bycatch  (Abbott  &  Wilen 2011),  the  effect  

of  spatial  closures  and marine  reserves  (Haynie  &  Layton  2010,  Smith  2005),  or  the  extent  of  

information-sharing across f ishermen  (Smith  2000).   

Such  catch  data  are  non-randomly  sampled.  A  fisher  may  possess  a  diversity  of  private  information 

not known  to  the  researcher  when  they  make  a  decision  where  to fish.  Fishers  may  share  

information  with  each  other  in  ways  researchers  cannot observe.  In  addition,  fishers  may  follow  

an  aggregation  of  fish across  areas,  such  that  they  know catches  will  be  large  at  their  next  location,  

even  in  the  absence  of  previous  visits  (and therefore  researcher-observed data)  at that location.  

However,  even  if  the  distribution  of  the  error  with  which  researchers  estimate  expected catch  is  

mean  zero,  the  expected value  of  that  error  conditional  on  observing the  catch  is  not.  When  fishers  

are  more  likely  to choose  locations  with  larger  catches,  researchers  are  also  more  likely  to observe  

large,  positive  shocks.   

A  number  of  solutions e xist  to correct  for  selection bias  in the  sample  of  data  a  researcher  uses t o 

create  predicted values,  although  they  may  either  require  strong distributional  assumptions  about 

the  error  terms  or  may  not be  generalized to  models  with  polychotomous  choices.  In  a  Roy  (1952)  

model  estimating how migration  is  affected by  expected earnings  across  locations,  Dahl  (2002)  

suggests  a  semiparametric  correction  function,  noting that  the  mean  of  the  conditional  error  term  

can  be  written  as a n  invertible  polynomial  function of  the  probability  that  the  location  was c hosen 
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69 (Ahn  &  Powell  1993),1  which  allows  the  researcher  to  forgo  assumptions  about the  joint  

distribution  of  the  error  terms ( e.g.  Lee  (1983)  examines  a  similar  problem  where  the  distribution 

is a ssumed jointly  normal).  We  contribute  to  the  broader  literature  of  modeling and correcting for  

selection  bias,  the  seminal  example  of  dichotomous  choice  found in  Heckman  (1979),  by  applying  

a  full  information  correction  that simultaneously estimates  model  parameters  with  correction 

functions  in  a  polychotomous c hoice  setting.  

First,  we  propose  an  extension  to  previous  models  by  simultaneously  estimating attribute  

expectations  (i.e.,  expected catches)  within the  discrete  choice  model.  Instead of  estimating the  

probabilities  of  choosing a  location  in  a  first  stage,    which    are    needed as    covariates    in    Dahl’s  (2002)  

correction  function,  we  simultaneously  estimate  the  catch  equation  with  a  correction  function  and  

the  discrete  choice  problem  using full  information maximum  likelihood.  To  our  knowledge,  the  

first  stage  with  correction  has  not  been  modeled jointly  with  the  second-stage  problem,  as  the  

second-stage  equation  of  interest is  not always  a  discrete  choice  problem,  but  may  be  a  linear  

function  instead (e.g.  examining the  magnitude  of  migration  flows  in Dahl  2002).  Our  Monte  Carlo  

experiments  suggest  that  the  full  information  approach  performs  well  at  identifying coefficients  at  

the    extremes    of    the    choice    set.    Second,    we    apply    an “identification    at    infinity”    weighting approach 

(Andrews  &  Schafgans  1998,  Chamberlain  1986)  that  allows  us  to  identify  levels  in  the  attribute  

equation;  an  intercept  in  the  first-stage  equation  typically  cannot be  identified due  to estimation  of  

the  correction  function  (Dahl  2002),  however,  we  do so with  an  extension  of  the  weighting  

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

1  The  continuous n ature  of  catch  and revenue  data  makes t he  fisheries c ontext  a  particularly  

suitable  application  of  the  correction.  
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89 approach to a polychotomous context. This is broadly useful for any application  where the level    

of predicted values (e.g. wages, costs, test scores, fishery catches), is important.2  

In  the  remainder  of  this  paper,  we  first  explain how the  fisher  uses  private  information  about 

catches  when  they  choose  locations,  and how expected catch  is  proxied by  the  researcher  with 

error  due  to selection.  Monte  Carlo  experiments  illustrate  how this  biases  parameter  estimates,  and  

how a  correction  function  approach  can  test  and correct for  the  bias.  The  experiments  also  suggest  

that  a full  information  maximum  likelihood procedure  performs  well  at  the  extremes  of  the  choice  

set,  which  is  important  in  estimation  of  the  discrete choice  parameters.  Finally  as a n  example,  we  

demonstrate  the  importance  of  selection  in the  U.S.  Bering Sea  catcher  vessel  pollock fishery.  We  

can  test  the  statistical  significance  of  the  correction  function  in  order  to ascertain  whether  self-

selection  exists i n  a  model  relying on  non-standardized catch  data  recorded by  onboard observers, 

and find the  use  of  uncorrected fishery-dependent  data  results  in  underestimated welfare  effects  

from  a  hypothetical  spatial  closure  

2. LOCATION CHOICE  AND EXPECTED CATCH WITH ERROR 

Consider  a  stylized model  where  a  fishing fleet  harvests f ish  from  the  spatial  distribution  of  a  fish  

population  that  is  on  average  time-invariant,  such  that  some  locations  have  larger  catches  on  

average  than  others.  However,  specific  catches  also  vary  from  averages  across  time  in  some  
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2  For  example,  Dahl  (2002)  does n ot  require  wage  levels  in his a nalysis o f  migration  flows,  

however,  in  an  application  where  wages e nter  a  second-stage  discrete  choice  problem  (Bertoli  et  

al.  2013),  the  wage  intercept  is n ot  separately  identified from  the  polynomial  intercept.  
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108 unobservable,  non-systematic  way  (e.g.,  as  fish  move  to different  locations). We can  write  the  true,  

realized  weight  of  fish caught  (𝑌𝑖𝑡𝑘   ) by  fisher  i at  location  k  for  observation  t as  a  function  of  

covariates  (𝑋𝑖   , potentially  vessel-specific),  a  location-specific  parameter  𝛽𝑘    that  scales  vessel 

characteristics  to  catch,  and a  stochastic  catch  deviation  term  𝑢𝑖𝑡𝑘   ,  such  that:  

𝑌𝑖𝑡𝑘   =   𝑋𝑖 ′𝛽𝑘   +   𝑢𝑖𝑡𝑘   .  (1)  

In  (1),  the  attribute  catch  varies  by  location,  and depends  on  covariates  such  as  the  size  of  the  

vessel,  and we  assume  𝑢𝑖𝑡𝑘    is  a  stochastic  term  representing the  myriad of  influences  that can 

impact    the    fisher’s    catch    that    cannot    be    captured    by    the    researcher’s    model.    Therefore,    𝑋𝑖 ′𝛽𝑘    

represents  the  time-invariant  average  catch  at location  k  for  fisher  i,  but then  catch  can  deviate  

from  this a verage  at  any  given  observation.   

We  assume  the  stochastic  catch  deviation  can  be  written  as t wo parts,  one  part  the  fisher  observes  

𝑓     (𝑢 𝑠 ), and one  part  the  fisher  does  not observe  ( ),  such  that 𝑖𝑡𝑘   𝑢𝑖𝑡𝑘   

𝑢    𝑓   
=  𝑢 +   𝑢𝑠   )

 . (2  
𝑖𝑡𝑘  𝑖𝑡𝑘   𝑖𝑡𝑘   

Furthermore,  we  make  the  following assumption  such  that  both  are  independently  and identically  

distributed mean  zero  random  variables.  

𝑓   

  [  
𝑢 𝝈

Assumption 1. 𝑖𝑡𝑘       
𝑠   ] ~  𝑵 ([𝟎],  [  𝒇   𝟎 ]) 

𝑢 𝟎  𝟎   𝝈  𝑘   𝒔 𝑖𝑡

Then  it  follows  that  𝑢𝑖𝑡𝑘    is  also  a  mean  zero  normally  distributed random  variable,  a  common 

assumption  used in  empirical  studies.  

Denote  the    fisher’s    information    set    𝐼𝑓,  which  can  contain  private  information  that  catches  will  be  

good  at their  next  chosen  location  despite  having not fished there  yet. Specifically,  we  can  define  
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𝐼   
𝑓  =   {𝛽𝑘,  𝑓 

  𝑋𝑖,    𝑢 ;    ∀   𝑓   
 𝑘}.  The  term  𝑢  allows  fishers  to  share  information  amongst  themselves 𝑖𝑡𝑘   𝑖𝑡𝑘   

through  complex  social  networks  in  a  way  not observable  to the  researcher,  for  example.3  Or,  more  

skillful  vessel  skippers  would know when  catches  are  larger  than  average  at a  location  and act  

𝑢𝑠   accordingly.  Although  the  fisher  does  not observe  part of  the  stochastic  deviation  𝑖𝑡𝑘   ,    fisher-

𝑓   
specific  knowledge  would allow fishers  to  choose  locations  when  they  know the  deviations  of  𝑢𝑖𝑡𝑘   

are  positive  and catches a re  larger.   

Conversely,  the  researcher  does  not observe  𝛽𝑘    or  attribute  levels  𝑌𝑖𝑡𝑘    at locations  not chosen. 

Rather,  they  only  observe  realized catches  at  locations  fishers  choose,  denoted  �̃�𝑖𝑡𝑘   ,  as  well  as  

fisher  characteristics  𝑋𝑖   , such  that  the  information  set  of  the  researcher  𝐼𝑟   =   {𝑋 , �̃�𝑖 𝑖𝑡𝑘   }.  Then,  the  

researcher  must  construct a  proxy  of  attribute  levels  in  order  to compare  locations,  without 

observing the  variation  from  the  stochastic  error,  or  knowing the  true  expectation  function.  

To  create  attribute  expectation  proxies  researchers  can  regress  observed catches  on  known 

covariates,  and use  the  estimated 𝛽𝑘    to  construct  counterfactual  estimates o f  expected catch:   

𝐸[𝑌 |𝐼   ̂   ̂ (3)𝑖𝑡𝑘   𝑟]   =   𝑌𝑖𝑡𝑘   =   𝑋𝑖′𝛽𝑘 .     

Note  that  (3)  is  generalizable  to  match  contemporary  methods  of  constructing catch  expectations  

in fisheries  economics.  𝑋𝑖    could  include  covariates  such  as  average  catches  over  a  more  recent  
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3  Studies s uch  as  Abbott  &  Wilen  (2010)  and  Evans  &  Weninger  (2014)  have  investigated if  

fishers c hoose  to share  information  about  catches a mongst  each  other,  although  the  existing 

research  does n ot  always  find benefits to   fishers.  
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145 period of  time    relative    to    the    fisher’s    choice    occasion    (Eales  &  Wilen 1986),  or  weighted moving  

averages  of  different  lag lengths  to include  both  fine-grained and historical  information  (Abbott  & 

Wilen  2010).  Here  we  focus  on  a  common  approach  that  can  be  thought of  as  a  vessel-specific  

average  catch  over  the  entire  sample  of  data  available  to the  researcher.4  Our  specification  also  

corresponds  better  to more  general  economic  models: for  example,  we  could imagine  expected 

wages  on  the  left-hand side  as  a  function  of  education,  in  models  of  human  migration.  Importantly,  

in all  specifications  the  researcher  does  not  observe  the  variation  in catch  expectations  at  each 

𝑓   
location  (𝑢 )  that  is o bserved by  the  fisher.  𝑖𝑡𝑘   

Because  the  researcher  does  not observe  attribute  levels  at  all  locations,  but  only  at  locations  

chosen  by  the  fisher,  𝛽𝑘    is  a  biased estimator.    The    fisher’s    choice    problem    in a    standard random  

utility  model  assumes  fishers  choose  to fish  in  location  k  if  its  expected utility  𝑈𝑘    is  greater  than 

the  utility  in  all  other  locations,  or   

𝑈𝑘   > 𝑈𝑚 ∀ 𝑚 ≠ 𝑘.    (4)  

We  assume  the    fisher’s    utility    from    alternative    k  depends o n  the  marginal  utility  they  derive  from  

catch  𝛼, their  starting location  j, vessel- and location-specific  variables  that  are  costly  to  the  fisher  

(𝑍𝑖𝑗𝑘   ;  e.g.  travel),  a  parameter  𝛾    that  scales  cost  conditional  on  vessel  characteristics,  and a  portion  

of  utility  unknown  to the  researcher  𝜀𝑖𝑡𝑗𝑘   :  
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4  We  would expect  that as  the  catch  expectation  function  becomes  more  fully  specified,  and 

fewer  variables a re  omitted,  the  amount  of  private  information  available  only  to the  fisher  could 

decrease.  However,  note  that the  problem  we  describe  in  this pa per  pertains t o a  scenario  where  

any  information  about  catches r emains a vailable  to the  fisher  but  not to  the  researcher.  
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𝑓
   

𝑘    
𝑡𝑗  =  

𝑈 𝑉 (5)
𝑖  𝑖𝑡𝑗𝑘   +   𝜀𝑖𝑡𝑘   =  𝛼   ∗   (𝑋𝑖 ′𝛽𝑘   +   𝑢 .  𝑖𝑡𝑘   )   −   𝛾(𝑍𝑖𝑗𝑘   )   +   𝜀𝑖𝑡𝑗𝑘   

𝑓   
The  fisher’s    expected catch    can  be  written  as  𝐸[𝑌𝑖𝑡𝑘   |𝐼𝑓]   =   𝑋𝑖 ′𝛽𝑘   +   𝑢 ,  as  they  observe  the  part 𝑖𝑡𝑘   

of  the  stochastic  catch  deviation  that  corresponds  to their  private  information,  and their  expectation 

 𝑠 of 𝑢𝑠     𝑖𝑡𝑘    equals  zero (𝐸[𝑢𝑖𝑡𝑘   |𝐼𝑓]   =   0). We  assume  the  unknown  portion  𝜀𝑖𝑡𝑗𝑘    is  assumed to be 

independently  and identically  distributed extreme  value  (Gumbel),  and that the  marginal  utility  of  

catch  is po sitive.  

Assumption  2. 𝜀𝑖𝑡𝑗𝑘    ~    𝑮𝑬𝑽(𝝁   ∈   ℝ,  𝜷   >   𝟎,   𝛏   =   𝟎)   

Assumption  3. 𝛼   > 0    

Then,  the  true  probability  fisher  i chooses  location  k  can  be  written  as:5  

𝑃𝑟𝑜𝑏(𝑈𝑖𝑡𝑗𝑘   > 𝑈 (6)𝑖𝑡𝑗𝑚   , ∀  𝑚 ≠ 𝑘; 𝛼, 𝛾, 𝛽𝑘 , 𝑍𝑖𝑗𝑘, 𝑋𝑖 ) =   

𝛼   𝑓   𝛾   
exp ( ⁄𝜎 ∗(𝑋 ′𝛽 +𝑢  )−   ⁄ (𝑍 ))   

𝑠𝑐𝑎𝑙𝑒   𝑖 𝑘 𝑖𝑡𝑘   𝜎 𝑖𝑗𝑘𝑠𝑐𝑎𝑙𝑒

𝑚=𝑀   𝛼 𝑓   𝛾   . 
∑   𝑚=1   exp ( ⁄𝜎   ∗(𝑋𝑖 ′𝛽𝑚+𝑢  )−  ⁄

𝑠𝑐𝑎𝑙𝑒   𝑖𝑡𝑚   𝜎  (𝑍   𝑖 )
𝑠𝑐𝑎𝑙𝑒 𝑗𝑚) 

Notice  that  in  (6)  the  probability  that  the  fisher  chooses  a  location  (and the  researcher  observes  

that  catch)  increases  with  larger,  positive  error  realizations  as  long as  𝛼   > 0.  The    fisher’s    expected    

𝑓   
catch  𝐸[𝑌𝑖𝑡𝑘   |𝐼𝑓 ]    depends  on  the  private  signal  about catch  deviations  𝑢 ,  and larger  catches  are  𝑖𝑡𝑘   

𝑓   
associated with  greater  utility  at  a  location.  𝐸[𝑢 |𝑖𝑡𝑘   𝑜𝑏𝑠𝑒𝑟𝑣𝑒    𝑌𝑖𝑡𝑘   ]    ≠   0    is  directly  a  result  of  the 

fisher’s    choice    problem    when    specified as    a  random  utility  model  (RUM),  where  fishers  choose  

locations  (and catches)  that  result  in  the  greatest  expected utility  at  that  time,  visiting locations  

when  they  have  private  information  fishing is go od at  that location.  Thus,  the  sample  of  observed  
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5  Note  that  only  2 of  the  3 parameters ( 𝛼,   𝛽,   𝜎𝑠𝑐𝑎𝑙𝑒   )  can  be  identified.  In  practical  use  these  will 

typically  be  𝛼    and 𝛽    divided by  some  unknown  scale  parameter.  
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177 catches  is  biased (𝐸[�̃�𝑖𝑡𝑘   ]   =   𝑋𝑖′𝛽𝑘   +    𝐸[𝑢𝑖𝑡𝑘   |𝑜𝑏𝑠𝑒𝑟𝑣𝑒    𝑌𝑖𝑡𝑘   ]),  biasing estimates  of  𝛽  
 as well.6 

𝑘     

Finally,  any  discrete  choice  model  that  empirically  compares  locations  by  inserting a  prediction 

for  the  average  catch  �̂�𝑖𝑡𝑘    at each  location,  such  as  in  equation  (7), will  also  be  biased.  

𝑃𝑟𝑜𝑏(𝑈𝑖𝑡𝑗𝑘   > 𝑈𝑖𝑡𝑗𝑚   , ∀ 𝑚 ≠ 𝑘; 𝛼, 𝛾, 𝛽 (  𝑖) 7𝑘, 𝑍 )𝑖𝑗𝑘, 𝑋 =   

𝛼 𝛾   
exp( ⁄𝜎   ∗�̂� ) 𝑖𝑡𝑘−   ⁄

𝑠𝑐𝑎𝑙𝑒 𝜎   (𝑍 )  𝑠𝑐𝑎𝑙𝑒   𝑖𝑗𝑘

∑𝑚=   𝑀   𝛾  𝛼  .
𝑚=1   exp( ⁄𝜎   ∗�̂�𝑖𝑡𝑚−   ⁄𝜎   (𝑍𝑖 ) 𝑗𝑚 )

𝑠𝑐𝑎𝑙𝑒  𝑠𝑐𝑎𝑙𝑒   

Because  𝛼   >   0    and catch  enters  utility  positively  in  this  example  of  fisher  location  choice,  we  

𝑓   
expect  that  𝐸[𝑢 |𝑜𝑏𝑠𝑒𝑟𝑣𝑒    𝑌𝑖𝑡𝑘   ]   >   0,  but  we  note  in  general  the  methods  described in  this  paper 𝑖𝑡𝑘   

are  agnostic  about  the  sign  of  the  selection  bias.  As  long as  expected error  in  the  conditional  sample  

is  non-zero,  attribute  level  predictions a re  incorrect.  This  also  implies we   could  assume  the  fisher  

𝑠   has  full  information  in the  fishery  (𝑢𝑖𝑡𝑘   =   0)    without  loss o f  generality,  as  long as t here  is ut ility-

𝑓   
𝑢 ≠   0 7 𝑠   maximizing behavior  and .  Specifically,  additional  noise  from  non-zero   mitigates 𝑖𝑡𝑘   𝑢𝑖𝑡𝑘   

the  impact  from  selection  to the  extent  correlation  between  𝑌𝑖𝑡𝑘    and 𝐸[𝑌𝑖𝑡𝑘   |𝐼𝑓]    decreases. 

3. CORRECTING SELECTION  BIAS 

Because  the  researcher  inserts  incorrect  proxies  of  catches  in  the  discrete  choice  problem,  they  will  

misunderstand how fishers  make  trade  offs  between  catches  and costs.  For  example,  if  differences  

in  expected catches  between  locations  are  underestimated,  the  researcher  would observe  fishers  

choosing to  move  to  different  locations,  incurring travel  costs,  despite  relatively  small  changes  in  
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6  𝐸[𝑢𝑠   |𝑜𝑏𝑠𝑒𝑟𝑣𝑒    𝑌 ]   =   0 𝑠    Note 𝑖𝑡𝑘 𝑖𝑡𝑘   ,  as n either  the  researcher  nor  fisher  observes  𝑢𝑖𝑡𝑘   . 

7  To  see  this,  notice  that  even  if  the  fisher  has pe rfect  information  and the  researcher  observes  

none  of  the  stochastic  portion  of  catch,  but  the  fisher  chooses l ocations r andomly  and not based 

on  a  selection  criteria,  parameter  estimates  in  the  catch  equation  would be  unbiased.  
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192 proxied expected catch  (�̂�𝑖𝑡𝑘   ). Then  in  order  for  the  probability  in  (7)  to match  empirical  choice  

patterns,  the  model  would incorrectly  infer  fishers  must  derive  large  marginal  utilities  from  small  

changes. A  correction  function  approach  allows  us  to both  test for  selection  bias  as  well  as  estimate  

unbiased parameters  for  the  catch  distribution  and choice  components o f  the  model.  

We    refer    the    reader    to Dahl’s    (2002)    paper    for    a    complete    explanation    of    the    correction    function,    

which  approximates t he  conditional  error  as a   polynomial  function  of  the  probability  of  visiting a  

location  (𝑝𝑖𝑡𝑗𝑘   ),  where  𝜷𝑝𝑟𝑜𝑏    is  a  vector  of  coefficients  to be  estimated,  with  each  coefficient  

corresponding to  a  polynomial  term.8  In  addition,  let  �̃�𝑖𝑡𝑗𝑘    and 𝑀𝑖𝑡𝑗𝑘    be  indicator  variables,  the 

first    denoting if    the    fisher    moved or    “stayed”,    and the    second to    which    location    they    moved,    which 

allows t he  conditional  error  to  vary  based on  the  moving decision.  Note  that  moving or  staying is  

not a    nested decision,    but rather    “staying”    denotes    the    fisher    chose    the    same    location    (and incurred    

no  moving cost).  

To use  the  correction  we  assume  that the  probabilities  used as  covariates i n  the  correction  function 

are  the  only  factors  that  influence  the  joint  distribution  (𝑔𝑘)  of  the  errors  in  the  catch  equation  and  

a  maximum  order  statistic  summarizing the  error  terms  in the  selection  equation.  If  we  follow  
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8  For  example,  a  3rd  order  polynomial  correction  function  for  a  fisher  that  stayed at  location  k  

2 3could be  written  as  𝑐   +   𝛽𝑝𝑟𝑜𝑏1   ∗   𝑝𝑖𝑡𝑗𝑘   +   𝛽𝑝𝑟𝑜𝑏1   ∗   𝑝𝑖𝑡𝑗𝑘   +   𝛽𝑝𝑟𝑜𝑏3   ∗   𝑝𝑖𝑡𝑗𝑘   ,  where  𝜷𝑝𝑟𝑜𝑏    and 

constant  𝑐    are  estimated,  and the  probabilities  𝑝𝑖𝑡𝑗𝑘    of  fisher  i  staying at  location  k  are  included 

as c ovariates.  
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209 Dahl’s    notation    such  that  �⃗�    represents  the  chosen  subset  of  the  full  migration 

probabilities  {𝑝𝑖𝑡𝑗1,   .   .   .   ,   𝑝𝑖𝑡𝑗𝑁   }    of  moving to {1…N},  this c an  be  written  as:  

Assumption  4.  𝑔𝑘(𝑢𝑖𝑡𝑘   , max(𝑉𝑚   − 𝑉𝑘 + 𝜀𝑖𝑡𝑗𝑚   − 𝜀𝑖𝑡𝑗𝑘   ) | 𝑉1 − 𝑉𝑘, … , 𝑉𝑁   − 𝑉𝑘)   
𝑚   

= 𝑔𝑘(𝑢𝑖𝑡𝑘   , max(𝑉𝑚   − 𝑉𝑘 + 𝜀𝑖𝑡𝑗𝑚   − 𝜀𝑖𝑡𝑗𝑘   ) | �⃗� ) 
𝑚   

Then,  if  catches  follow the  process  in  (1),  (𝑌𝑖𝑡𝑘   =   𝑋𝑖′𝛽𝑘   +   𝑢𝑖𝑡𝑘 ),  s   ̂
  e timates of 𝛽𝑘      can  be  obtained 

by  including an  approximation  of  the  conditional  expectation  𝐸[𝑢𝑖𝑡𝑘   |𝑜𝑏𝑠𝑒𝑟𝑣𝑒    𝑌𝑖𝑡𝑘   ]    ≈   

𝜂(�̃�𝑖𝑡𝑗𝑘   ,   𝑀𝑖𝑡𝑗𝑘   ,   𝑝𝑖𝑡𝑗𝑘   ,   𝜷𝑝𝑟𝑜𝑏)    in  ordinary  least  squares e stimation  of  the  regression:  

�̃� ̃
𝑖𝑡𝑗𝑘   = 𝑋𝑖′𝛽𝑘 + 𝜂(𝑀𝑖𝑡𝑗𝑘   , 𝑀𝑖𝑡𝑗𝑘   , 𝑝𝑖𝑡𝑗𝑘   , 𝜷𝑝𝑟𝑜𝑏) + 𝑣𝑖𝑡𝑘   .  (8)  

Following Dahl,  we  include  a  separate  correction  function  for  each  location  when  a  fisher  moves,  

and for    each    location    when    a    fisher    “stays”,    thus    allowing the    conditional    error    to be    different  

depending on  the  move/stay  decision.  With  K  locations  there  are  therefore  a  total  of  K*2  correction 

functions.  Note  that 𝑣𝑖𝑡𝑘    is  an  error  term  with  mean  zero  in  the  conditional  sample  and 𝑢𝑖𝑡𝑘    is  

estimated as a   function  of  the  probability  of  moving to  or  staying at  location  k:  

𝜂(�̃�𝑖𝑡𝑗𝑘, 𝑀𝑖𝑡𝑗𝑘   , 𝑝𝑖𝑡𝑗𝑘   , 𝜷𝑝𝑟𝑜𝑏   )   =   (9)  

𝐾    �̃� ̃ 𝐾  
𝑖𝑡𝑗𝑘   ∑k=1[𝑀𝑖𝑡𝑗𝑘   ∗ 𝜂𝑖𝑡𝑗𝑘   (𝑝𝑖𝑡𝑗𝑘)] + (1 − 𝑀𝑖𝑡𝑗𝑘) ∑k=1[𝑀𝑖𝑡𝑗𝑘   ∗ 𝜂𝑖𝑡𝑗𝑘(𝑝𝑖𝑡𝑗𝑘)]   =    

𝑞  
𝑀    �̃�    𝐾  =�̃�  𝑞 ̃  =𝑄  ̃ 

𝑖𝑡𝑗𝑘   ∑𝑘=1[𝑀  𝛽  
  (  

𝑖𝑡𝑗𝑘 ∗ ∑ 𝑞
𝑞=1 𝑝𝑟𝑜𝑏,𝑘,𝑞 ∗ 𝑝𝑖𝑡𝑗𝑘   +  ∑�̃�=1 𝛽𝑝𝑟𝑜𝑏,𝑘,�̃� ∗ (𝑝𝑖𝑡𝑗𝑘�̃�𝑖𝑡𝑗𝑗)   ) )] +   

𝑞=𝑄      (1 − �̃� ) ∑𝐾
𝑖𝑡𝑗𝑘 k=1[𝑀𝑖𝑡𝑗𝑘   ∗ (∑q= 𝛽𝑝𝑟𝑜𝑏 ,𝑞 ∗ �̃� 𝑞

1 ,𝑘 𝑖𝑡𝑗𝑗   )].  

The  selection  bias f or  each  location  is  approximated in  equation  (9)  with  a  polynomial  function  of  

q  degrees.  The  probability  that  fisher  i chooses  location  k  is  denoted 𝑝𝑖𝑡𝑗𝑘   ,  while  the  probability  

that they  stay  is  denoted �̃�𝑖𝑡𝑗𝑗   ,  where  q  is  the  power  of  the  polynomial.  Also  note  that in  the  

correction  function  for  movers,  the  polynomial  of  the  moving probability  and the  polynomial  of  
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225 the  interaction  term  need not be  the  same  degree  (𝑞   ≠   �̃�).  The  number  of  total  parameters  in  the  

correction  function  then  depends o n  the  number  of  alternatives a nd the  degree  of  the  polynomial.9  

By  approximating the  conditional  error  term  with  a  polynomial  function,  and including it  in  the  

catch  regression,  we  can  purge  the  bias  in  𝛽𝑘    and therefore  obtain  unbiased predictions  of  expected  

catch,  which  leads  to accurate  estimation  of  the  discrete  choice  parameters.  In  addition,  an 

advantage  to  using the  correction  function  approach  is  that  we  can  estimate  the  statistical  

significance  of  the  correction  functions.  When  the  correction  terms  jointly  are  statistically 

significant,  they  indicate  whether  the  conditional  error  is  significantly  different  from  zero,  and  

whether  self-selection  occurs i n  the  sample  of  data  available  to  the  researcher.  

4. FULL INFORMATION MAXIMUM LIKELIHOOD ESTIMATION 

In  order  to  empirically  estimate  probabilities  (to  then  insert  into  the  correction  function),  Dahl  

suggests  partitioning data  into “cells”,    where    individual    fishers  within  a  cell  have  similar  

characteristics.  The  probabilities  can  be  recovered as  the  proportion  of  individuals  who  move  to 

each  location,  which  allows  individuals  with  different  characteristics  to be  more  or  less  likely  to 

move  to  a  given  location,  on  average.  Alternatively,  the  probabilities  can  be  estimated from  a first-

stage  discrete  choice  model  (e.g.,  with  conditional  logit).   Dahl  notes  the  danger  in  using these  

probabilities  in  a  two-stage  approach  if  two  locations  are  perceived to  be  similar  (rather  than 

independent)  by  individuals,  potentially  violating the  independence  of  irrelevant  alternatives  

assumption.  
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9  Specifically,  (2(Q+1)+�̃�)K  parameters  in  the  correction  functions w ith  K  alternatives.  
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246 

247 We  evaluate  two  model-based methods  of  estimating the  probabilities: a  two-stage  model  using  

nonparametric  cell  probabilities,  as  well  as  a  full-information  model  simultaneously  estimating the  

probabilities  as  a  function  of  catches.  Our  Monte  Carlo  experiments  suggest  the  full-information 

model  performs  well  at  the  extremes  of  the  choice  set  in  our  example. 10  When  evaluating our  

model  using nonparametric  cell  probabilities,  we  calculate  probabilities  as  the  proportion  of  

observations  in  which  each  vessel  visits  a  given  location  (essentially  treating each  individual  vessel 

as    a    “cell”),    because    we  can  exploit  repeated observations f rom  each  fisher  in  our  model,  a  unique  

feature  of  our  fisheries da ta.    

Conversely,  with  full  information,  the  probabilities  𝑝𝑖𝑡𝑗𝑘    in  the  correction  function  of  the  catch 

equation    are    no    longer    fixed,    but    rather    updated as    a    function    of    the    parameters    in    the    fisher’s    

utility.  Specifically,  we  take  advantage  of  the  fact  that the  probability  of  choosing a  location  (or  

staying in  the  original  location)  can  be  calculated as pa rt of  the  full  likelihood:  

𝑃𝑟𝑜𝑏(𝑈𝑖𝑡𝑗𝑘   > 𝑈𝑖𝑡𝑗𝑚   , ∀  𝑚 ≠ 𝑘; 𝛼, 𝛾, 𝛽𝑗 , 𝑍 (10)𝑖𝑗𝑘   , 𝑋𝑖)   

 𝛼 𝛾   
exp  ( ⁄𝜎   ∗   �̂�𝑖𝑡𝑘   −   ⁄𝜎  (𝑍𝑖𝑗𝑘   ))

𝑠𝑐  
 

𝑎𝑙𝑒  𝑠𝑐𝑎𝑙𝑒   
=  

𝑚=𝑀   𝛼 𝛾   ∑𝑚 =1   exp   ( ⁄𝜎   ∗   �̂�    −   ⁄  (𝑍 ))
𝑠𝑐𝑎𝑙𝑒   𝑖𝑡𝑚 𝜎𝑠𝑐𝑎𝑙𝑒   𝑖𝑗𝑚

𝛼 𝛾   𝑛   
exp( ⁄   ∗�̂�𝜎 −   ⁄   (𝑍 ))

𝑠.   𝑡.     𝑝 𝑛   =   (   𝑠𝑐𝑎𝑙𝑒   𝑖𝑡𝑘 𝜎    𝑖𝑗𝑘𝑠𝑐𝑎𝑙𝑒
𝑖𝑡𝑗𝑘   𝑚=     

 𝑀    𝛾  )   𝛼  .
∑ ̂   

𝑚=1   exp ( ⁄𝜎 ∗𝑌 𝜎 (𝑍 𝑖    𝑡𝑚−  ⁄ 𝑖𝑗𝑚))   
𝑠𝑐𝑎𝑙𝑒 𝑠𝑐𝑎𝑙𝑒

The  full  likelihood that  fisher  i  chooses l ocation  k  is  then:  
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10  An  example  of  joint  estimation  of  catch  and location  choice  is t he  expected profit  model  of  

Haynie  and Layton  (2010),  although  we  explicitly  correct for  selection  in  our  problem.  
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   2 𝑛  (11) − ̃2𝜋 2   −Σ (𝑌𝑖𝑡𝑘   − 𝑋𝑖′𝛽  − 𝜂(�̃�𝑖𝑡𝑗𝑘, 𝑀𝑖𝑡𝑗𝑘   , 𝑝𝑖𝑡𝑗𝑘, 𝜷𝑝𝑟 𝑏   )) 
𝑘  𝑜

𝑙𝑖𝑡𝑗𝑘   =   (   p  [  ])
𝜎𝑛   ex   2   

𝑐𝑎𝑡𝑐ℎ   2𝜎𝑐𝑎𝑡𝑐ℎ   

 
exp 𝛼 𝛾    ( ⁄𝜎   ∗ 𝑋𝑖′𝛽   −   ⁄   (𝑍𝑖𝑗𝑘))

   
𝑠𝑐𝑎𝑙𝑒   𝑘   𝜎𝑠𝑐𝑎𝑙𝑒   

∗ ( ) 
𝑚=𝑀   𝛼 𝛾   ∑   𝑚=1   exp   ( ⁄𝜎   ∗ 𝑋𝑖′𝛽𝑚 −   ⁄𝜎   (𝑍 ))

𝑠𝑐𝑎𝑙𝑒   𝑠𝑐𝑎𝑙𝑒   𝑖𝑗𝑚

𝑠. 𝑡.     𝜂(�̃�𝑖𝑡𝑗𝑘   , 𝑀𝑖𝑡𝑗𝑘   , 𝑝𝑖𝑡𝑗𝑘   , 𝜷𝑝𝑟𝑜𝑏)   =    

𝛼 𝛾   
exp( 𝜎   ∗ ̂⁄ 𝑌 −   ⁄   (𝑍 ))

(�̃� ) ∑𝐾   [𝑀 ∗ 𝜂 (   𝑠𝑐𝑎𝑙𝑒   𝑖𝑡𝑘 𝜎 𝑎𝑙𝑒 𝑖𝑗𝑘𝑠𝑐   
𝑖𝑡𝑗𝑘   𝑘=1 𝑖𝑡𝑗𝑘   𝑖𝑡𝑗𝑘   𝑚=𝑀   𝛾   )] +    

∑   𝛼
𝑚=1   exp( 𝜎   ∗�̂�⁄  𝑖𝑡𝑚−   ⁄𝜎  (𝑍 𝑗 ))  𝑖𝑠𝑐𝑎𝑙𝑒   𝑚𝑠𝑐𝑎𝑙𝑒 

𝛼 𝛾   
exp (    �̂�⁄𝜎 ∗ −   ⁄𝜎   (𝑍 ))

(1 − �̃� ) ∑𝐾   [𝑀 ∗ 𝜂 (   𝑖 𝑘𝑠𝑐𝑎    𝑖𝑡𝑘 𝑗𝑙𝑒 𝑠𝑐𝑎𝑙𝑒   
𝑖𝑡𝑗𝑘   𝑘=1 𝑖𝑡𝑗𝑘   𝑖𝑡𝑗𝑘   ∑𝑚=𝑀   .  𝛼 𝛾   )]

   exp ( ⁄  ∗�̂�𝜎 𝑖𝑡𝑚−   ⁄𝜎   (𝑍 ))𝑚=1 𝑠𝑐𝑎𝑙𝑒   𝑠𝑐𝑎𝑙𝑒   𝑖𝑗𝑚

Note  that  if  the  correction  is  successful  and the  parameters  𝛽𝑘    are  estimated without bias,  the  

researcher  is  comparing unbiased estimates  of  average  catch  across  locations  in  the  discrete  

component  of  the  likelihood.11  The  estimated correction  𝜂(∙)    varies  across  individual  fishers,  

across  chosen  locations,  and depending on  whether  the  fisher  moved or  stayed,  as  it  is  a  function 

of  the  indicator  variables  �̃�𝑖𝑡𝑗𝑘    and 𝑀𝑖𝑡𝑗𝑘   ,  as  well  as  the  probabilities  𝑝𝑖𝑡𝑗𝑘    that  are  updated as  a  

function    of    the    parameters    in    the    fisher’s    utility,    which    depend on    fisher    characteristics.  12  The  
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11  Note  that  the  correction  polynomial  is n ot  included in  the  discrete  component  of  the  likelihood 

because  inclusion  of  the  correction  implies t he  researcher  would be  comparing 

𝐸[𝑌𝑖𝑡𝑘   |𝑜𝑏𝑠𝑒𝑟𝑣𝑒    𝑌𝑖𝑡𝑘   ]    with  [𝑌𝑖𝑡𝑚   |𝑜𝑏𝑠𝑒𝑟𝑣𝑒    𝑌𝑖𝑡𝑚   ]    ∀    𝑚   ≠   𝑘.  Instead,  we  include  the  correction  in 

the  catch  portion  of  the  likelihood to  obtain  unbiased estimates o f  average  catch,  and then  

compare  unconditional  expectations o f  catch  across  locations.  

12  As  noted above  there  are  (2*(Q+1)+�̃�)*K  parameters i n  the  correction  functions  with  K  

alternatives.  Then,  the  total  number  of  parameters h ere  would equal  (2*(Q+1)+�̃�)*K  + K*𝑋𝑁    + 

https://likelihood.11
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267 correction  provides  √𝑛-consistent  and asymptotically  normal  estimates  in  the  catch  equation  with 

continuous  covariates  and as  the  number  of  basis  functions  increase  with  the  sample  size  (Andrews  

1991,  Newey  1997).   

There  are  advantages  and disadvantages  to  this  full  information  approach.  For  example,  the  

correction  assumes  we  know the  true  probabilities  of  moving,  but  Assumption  2 implies  we  are  

placing a  parametric  assumption  on  the  estimation of  the  probabilities  in  our  application:  namely 

that the  selection  equation  errors  are  distributed extreme  value.  Estimates  of  the  probabilities  could  

be  mis-specified,    compared to Dahl’s    nonparametric    approach.13  However,  this  also  allows  us  to 

use  multiple  continuous  covariates  to calculate  probabilities  rather  than  discrete  cells,  relaxing  

Dahl’s    assumption    that    agents    in    a    cell    are    affected by    moving costs,    catches,    etc.    in    the    same    way 

on  average.  For  example,  in    Dahl’s    approach,    it    would    make  little  sense  to  include  catch 

expectations  in  the  estimation  of  probabilities,  as  we  expect  observations  of  catch  to be  biased,  but  

by  simultaneously  estimating  corrected estimates  of  catch  we  can  provide  a  potentially  richer  

distribution  of  probabilities.  This  is  important  for  ensuring a  large  number  of  distinct  probabilities,  

mimicking continuous c ovariates  for  the  basis  functions.  
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N*𝑍𝑁    +  2 where  𝑋𝑁    and 𝑍𝑁    are  the  number  of  covariates  in the  catch  and cost  portions  of  utility  

𝑛   𝛼 respectively  and the  last  2 parameters a re  𝜎𝑐𝑎𝑡𝑐ℎ    and ⁄𝜎   .
𝑠𝑐𝑎𝑙𝑒   

13  We  thank an  anonymous r eviewer  for  highlighting  this t radeoff.  In  robustness c hecks w ith  

normal  errors i n  the  selection  equation  we  did not  find significant  differences  in  our  Monte  Carlo  

results ( available  from  the  authors  upon  request);  however,  further  research  is r equired.  

https://approach.13
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284 In  addition,  as Da hl  notes,  it  would be  natural  to  include  probabilities o f  choosing other  locations  

besides  the  chosen  location  in  the  correction  function  as  well,  at  the  cost of  increasing the  

dimensionality  of  the  problem.  For    better    comparison,    we    follow Dahl’s    suggestion    of    adding    only  

the    probability    of    “staying”    in the    correction    function.    While  it  is  feasible  to  include  only  the  

probability  of  the  chosen  location,  as  long as  this  probability  conveys  all  information  about catches  

in  a  chosen  location  (a  condition  Dahl  refers to  as  the  index  sufficiency  assumption),  we  note  that  

an  additional  advantage  of  the  full  information  estimation  is  that we  can  use  the  probabilities  

corresponding to    an    individual’s    2nd -, 3rd -, 4th -,  etc.,  best  choices a s we ll,  as t hese  are  estimated in 

the  full  information  method but  not observed in  cell  probabilities.  

Because  previous  literature  typically  estimates a   first-stage  regression  with  correction,  and inserts  

predicted values us ing the  first-stage  estimates  in  a  second-stage  equation  of  interest,  we  compare  

non-corrected,  two-stage  (using cell  probabilities),  and full-information  correction  approaches  in 

the  next  section.  There  are  potential  benefits  from  simultaneously  estimating the  corrected  first-

stage  with  the  second-stage  equation  of  interest,  and we  illustrate  the  asymptotic  behavior  of  the  

full  information  estimation  method with  Monte  Carlo  simulations t o  demonstrate  that  selection  is  

of  empirical  concern.  

5. MONTE  CARLO EXPERIMENT ILLUSTRATES HOW  CATCH AND DISCRETE  CHOICE  ESTIMATES ARE 

BIASED 

We  use  a  stylized model  in a  Monte  Carlo  experiment  to  demonstrate  that fishers  choose  locations  

based on  private  information  not  known  to the  researcher,  and this  biases  estimates  of  the  marginal 

utility  from  catch  in  random  utility  models  of  location  choice.  For  the  data-generating process  in 
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307 our  experiment  there  are  K=4  locations,  where  catch  and utility  vary  across  locations.14  A  given  

fisher  i  that is c urrently  in  location  j  chooses b etween  K  potential  utilities:  

𝑈 (12) 𝑖𝑡𝑗𝑘   =   𝛼   ∗   𝐸[𝑌𝑖𝑡𝑘   |𝐼𝑓]   −   𝛾(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑘   ∗   ℎ𝑝𝑖)   +   𝜀𝑖𝑡𝑗𝑘   .  

Here  costs de pend on  the  distance  from  their  current  location  j  to  potential  location  k. In  addition,  

distance  is  interacted with  a  fisher  characteristic  (e.g.,  vessel    “horsepower”    ℎ𝑝𝑖   );  vessels  with  more  

horsepower  may  have  higher  or  lower  costs  of  travel.  We  randomly  generate  uniformly  distributed 

variables  for  horsepower  such  that  ℎ𝑝𝑖~𝑈[1,10];  note  that the  scale  of  the  distribution  is  chosen 

for  convenience  and is  generalizable  as  long as  costs  are  scaled appropriately  to  the  other  variables  

in  fisher  utility  (e.g.,  by  scaling the  𝛾    coefficient  on  distance  instead).    

Fishers  choose  locations  on  a  square  grid,  where  the  Euclidean  distance  to the  adjacent  grid square  

is  parameterized to  be  1.5 units.15  In  addition,  𝜀𝑖𝑡𝑗𝑘    is  distributed Extreme  Value  Type  I  (𝐺(0,1)) 

with  mean  equal  to the  Euler-Mascheroni  constant  (0.5772)  and variance  equal  to  𝜋2/6.  

We  assume  catches  follow: 

(𝑌𝑖𝑡𝑘   =   𝛽𝑘   ∗   (𝑔𝑟𝑡𝑜𝑛𝑠𝑖)   +   𝑢𝑖𝑡𝑘   ), (13)  
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14  We  choose  a  relatively  smaller  number  of  locations  which  allows  a  relatively  pronounced bias  

and computational  simplicity  that  makes  it  easier  to study  correction.  

15  And the  distance  to the  diagonal  location  is 2. 12 units.  

https://units.15
https://locations.14
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321 where  fishers  in  vessels w ith  greater  gross  tonnage  catch  more  fish  on  average.  The  fisher  

characteristic  𝑔𝑟𝑡𝑜𝑛𝑠𝑖    is  a  scalar  distributed  𝑈[1,5],16  while    the    error    on    the    researcher’s    catch   

𝑓   𝑠   regression  𝑢𝑖𝑡𝑘   =   𝑢 is n ormally  distributed (𝑁(0,3)),  and  𝑢𝑖𝑡𝑘   =   0. For  simplicity  we  will 𝑖𝑡𝑘   

initially  investigate  a  corner  condition  where  the  fisher  observes  𝑌𝑖𝑡𝑘    for  all  k,  and chooses a   

location  based on  its o bservation,  while  the  researcher  constructs  �̂�   ̂
𝑖𝑡𝑘   =   𝛽𝑘   ∗   (𝑔𝑟𝑡𝑜𝑛𝑠𝑖)    as 

𝑠   𝑓   
described in  Section  2. As t he  ratio  of  𝑢𝑖𝑡𝑘    to  𝑢  increases,  we  may  expect  the  effect  from  𝑖𝑡𝑘   

selection  bias to   decrease.  The  true  catch  coefficients  𝛽𝑘    are  described in  the  first  column  of  

Table  1.  

Accordingly,  the  estimated probability  that  the  fisher  chooses l ocation  k  is:  

𝑃𝑟𝑜𝑏(𝑈 (14)  𝑖𝑡𝑗𝑘   > 𝑈𝑖𝑡𝑗𝑚   , ∀ 𝑚 ≠ 𝑘; 𝛼, 𝛾, 𝛽𝑘, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑘, ℎ𝑝𝑖, 𝑔𝑟𝑡𝑜𝑛𝑠𝑖) =   

𝛼 𝛾   
exp( ⁄𝜎   ∗�̂�𝑖𝑡𝑘−   ⁄   (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑘∗ℎ𝑝𝑖))

𝑠𝑐𝑎𝑙𝑒   𝜎𝑠𝑐𝑎𝑙𝑒   

∑𝑚  .=𝑀   𝛼 𝛾   
𝑚=1   exp( ⁄𝜎   ∗�̂�  𝑖𝑡𝑚−   ⁄𝜎   (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑚∗ℎ𝑝𝑖))

𝑠𝑐𝑎𝑙𝑒   𝑠𝑐𝑎𝑙𝑒   

Because  the  scale  parameter  𝜎𝑠𝑐𝑎𝑙𝑒    cannot  be  identified,  for  the  purposes  of  comparison  in  the  

Monte  Carlo  experiments  we  do  not estimate  and fix  the  cost  parameter  𝛾    to  (-1),  and estimate  the  

catch  parameter  𝛼    and 𝜎𝑠𝑐𝑎𝑙𝑒   .  This  allows  us  to compare  the  marginal  utility  of  catch  parameter  to  

its  true  value,  and focus  on  determining  the  magnitude  of  the  bias  (as  well  as  how sensitive  fishers  

are  to  catch).  Because  catches  are  not  observed by  the  researcher  at  every  location  for  a  given 

observation,  we  first  estimate  𝛽𝑘    in  a  first-stage  regression,  then  use  �̂�𝑘    to create  proxies  of  
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16  Again  note  that we  have  chosen  the  scale  of  the  distribution  without loss o f  generality,  as o ther  

variables a nd coefficients ( such  as  𝛼    or  𝛽𝑘   ) in  the  fisher  utility  can  be  appropriately  scaled if  the  

fisher  characteristic  were  to be  changed.  
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337 
catch  �̂�𝑖𝑡𝑘, which are inserted in the fisher’s utility for the discrete choice    second-stage, and    

estimated using a conditional logit. 

We  generate  1000 choice  occasions  at  each  initial  location  k,  where  fishers  on  each  choice  occasion 

choose  between  K  utilities  and catches,  given  randomly  drawn  fisher  characteristics,  and the  fisher  

chooses  the  location  according to the  selection  criteria  in  (4), (𝑈𝑘   >   𝑈𝑚    ∀    𝑚   ≠   𝑘).    Note  this  

model  does n ot  include  or  account  for  state  dependence  or  dynamic  choice: researchers o bserve  a  

number  of  haul  occasions,  the  locations  chosen,  the  catches  at  the  chosen  locations,  and the  

location  of  the  previous  haul.  

5.1  Uncorrected results  

As  a  baseline,  first  note  in  the  left  column  of  Figure  1  that when  the  private  signal  is  absent  in 

𝑓   
fisher  catch  expectations  (i.e.,  𝑢𝑖𝑡𝑘   =   𝑢 ),  the  conditional  logit17  produces  unbiased 𝑖𝑡𝑘   =  0

estimates  of  𝛼,  where  the  true  parameters  are  given  in  the  last  column.  Next,  when  we  introduce  

error  in  the  catch  equation,  estimates  for  the  marginal  utility  from  catch  are  almost  twice  as  large  

as  the  true  means  (in  the  second column of  Table  1  and Figure  1  respectively). The  reported values  

in  Table  1  are  the  median  values  from  100 Monte  Carlo  iterations.   

Fishers w ill  choose  locations w ith  a  smaller  true  mean  whenever  the  private  signal  is po sitive  and  

large  for  that  time  period.  Researchers o bserve  the  catch  plus t he  private  signal,  predicted catches  

are  overestimated,  and  tradeoffs  such  as  from  a  spatial  closure  can  be  underestimated.  We  examine  

possible  welfare  effects i n  our  empirical  example  in  Section  6.  
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17  All  discrete  choice  models us e  modified routines  from  the  FishSET  R  package.  
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359 

360 Note  in  the  second column  of  Table  1  that  when  we  estimate  catch  according to  (3),  without 

correction,  the  bias  is  not proportional  across  locations  (for  each  estimated beta).  For  example  𝛽4    

is  estimated less  accurately  compared to locations  1-3.  The  selection  bias  for  locations  with  smaller  

average  catches  tends  larger  because  a  particularly  large  shock is  necessary  for  a  fisher  to  visit  that  

location.  This  is  important for  the  estimation  of  a  second-stage  conditional  logit  model  because  

the  selection  bias  does  not  fall  out  of  the  probability  in the  second  stage  when  we  use  the  estimated 

betas  to  create  predicted catch  values  as  proxies  for  expectations.  Differences  in catch  across  

locations  are  underestimated,  which  causes  overestimation  of  the  marginal  utility  from  catch  in  the  

conditional  logit  step (third column  of  Table  1). 18  The  researcher  incorrectly  believes t he  fisher  is  

willing to move  to  locations  for  small  increases  in  catch,  while  the  true  fisher  expectation  at those  

locations  is a ctually  larger  than  what  the  researcher  estimates.  

Finally  the  similarity  in  researcher-estimated  expected  catches  matches  empirical  data  patterns  in 

many  fisheries    where    catches    are    “hyperstable”,    and do    not change    much    across    locations    (e.g.  

Rose  and Kulka  2011). Hyperstable  catches  can  suggest  fish  stocks  are  healthy,  however,  our  

model  shows  that  hyperstability  can  be  a  result  of  selection,  and not  the  true  underlying  

heterogeneity  in  site  quality,  as o ur  true  means  across l ocations  do  vary.  
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18  Here  the  number  of  observations  in  the  data-generating process  is  important,  potentially  

impacting the  direction  of  the  bias  in  the  marginal  utility  of  catch,  which  can  be  positive  or  

negative.  The  direction  depends o n  the  similarity  of  catches a cross  locations,  and we  examine  

some  causes  in  Appendix  A.  



 

I. True   II. Catch with error III.  Two-stage  catch equation   IV. Full information maximum 

parameters     with correction function    likelihood with corrected catch  

 Parameter Estimated Standard Percent Estimated Standard Percent Estimated Standard Percent 

parameters  error   bias parameters  error   bias parameters  error   bias 

(from (from (from 

true)  true)  true)  

  𝜷𝟏  1.50  2.01  0.02*  34.0  1.40  0.04* -6.7  1.48  0.04* -1.3 

  𝜷𝟐  1.25  1.88  0.02*  50.4  1.22  0.05* -2.4  1.24  0.03* -0.8 

  𝜷𝟑  1.00  1.75  0.02*  75.0  1.04  0.06*  4.0  0.98  0.04* -2.0 

  𝜷𝟒  0.75  1.61  0.03*  114.7  0.86  0.07*  14.7  0.72  0.06* -4.0 

𝜶     3.00  5.88  0.27*  96.0  4.29  0.20*  43.0  3.10  0.37*  3.3 

  *α=0.05   F-test[40, 3956] = 40.02* 
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377  Table  1: Monte  Carlo  comparison  of  catch  parameter  and marginal  utility  from  catch  estimates,  between  no  correction,  two-stage,  and 

full  information  correction  models.    378
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380 

381 Figure  1: Discrete  choice  estimates  from  a  baseline  model  without private  signal,  and uncorrected estimates wh en  there  is e rror  in  

the  catch  equation. 382 
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383 

384 Figure  2: Corrected discrete  choice  estimates,  and full  information  maximum  likelihood discrete  choice  estimates.  
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385 5.2  Corrected results:  two-stage and full-information  

To eliminate  the  bias,  we  introduce  and compare  two  correction  functions,  a  two-stage  model  

mimicking Dahl’s    method and a  full-information  model. We  follow the  convention  described in  

Section  3, with  both  “stayer”    and “mover”    correction    functions  of  degree  3,  for  a  total  of  8 

correction  functions,  with  a  2nd -order  polynomial in  the  interaction  between  the  probability  of  

moving and the  probability  that  they  stayed.  We  generally  find the  choice  of  polynomial  is r obust  

to smaller-order  polynomials  in  the  simulation  example  (as l ow as  2nd -order  polynomials),  and the  

use  of  larger-order  polynomials  is a t  the  cost of  computational  efficiency.19  

Note  that  the  two-stage  application  effectively    uses    Dahl’s    cell  probabilities.  Because  we  can 

exploit  repeated observations  from  each  fisher  in our  model,  we  calculate  probabilities  as  the  

proportion  of  observations  in  which  each  vessel  visits  a  given  location  (essentially  treating each 

individual    vessel    as    a    “cell”).    Then,  individuals  with  the  same  characteristics  are  affected by  

differences  in  catch  and moving costs  in  the  same  way  on  average.  Using these  cell  probabilities  

we estimate  equation  (13)  with  correction  functions  appended,  in  a  first  stage  with  ordinary  least  

squares  and recover  �̂�𝑘   .  Then  we  create  proxies  based  on   those  estimates,  which  are  inserted into 

the  discrete  choice  problem  in  a  second  stage  (i.e.  equation  (14)).  
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19  In  the  simulation  as we ll  as t he  empirical  example  we  tested  multiple  models w ith  different  

polynomial  degrees,  as we ll  as  models w ith  and without a  “stayer”    correction  function.  While  

this wa s  important  to ensure  robustness,  additional work on  best  practices to   choose  the  

polynomial  degree  q is r equired.  

https://efficiency.19
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403 Column III  of  Table  1  reports  an  F-statistic  that  implies  the  data  is  inconsistent  with  the  hypothesis  

that  the  correction  function  terms  are  equal  to  zero.  Because  the  private  signal  in  the  uncorrected  

catch  equation  is  proxied by  the  correction  functions,  we  can  conclude  that  selection  bias  occurs  

in  this  simulated fishery,  given  the  terms  of  the  correction  are  jointly  significant  (they  are  different  

from  zero  at any  level  of  statistical  significance).  However,  although  the  corrected estimates  

improve  the  conditional  logit  estimates  of  the  cost and catch  coefficients,  they  cannot  completely  

correct the  second-stage  bias. The  traditional  two-stage  correction  appears  to  work  best  for  median 

values  of  𝛽: the  bias  is  larger  for  𝛽1    and 𝛽4    in  the  third column  of  Table  1. Even  if  the  bias  in  the  

corrected attribute-level  equation  is  much  smaller  than  the  uncorrected estimates, we  still  

consistently  underestimate  locations  with  larger  true  catches  and overestimate  locations  with 

smaller  true  catches.  This  structure  at  the  extremes o f  the  choice  set  turns  out  to  have  implications  

for  estimation  of  the  discrete  choice  parameters,  and the  marginal  utility  of  catch  (α) remains  

overestimated  in  column III,  because  we  observe  fishers  moving to  locations  for  small  perceived  

increases  in  catch.  

Jointly  estimating the  discrete  choice  portion  of  the  likelihood and the  corrected catch  function  in 

a  full-information  model  (equation  (11)), we  find that  the  selection  bias  in the  catch  equation  is  

close  to zero,  while  estimates  of  the  marginal  utility  from  catch  appear  both  unbiased and  

consistent  in  the  right  frame  of  Figure  2. Because  the  second-stage  equation  of  interest  is  often  not 

the  discrete  choice  problem  itself  in  Roy  models  of  migration,  joint  estimation  to our  knowledge  

has  not  been  investigated in  this  literature.  However,  by  examining the  fourth  column of  Table  1  

we  also  see  that estimates  of  α    are  improved because  small  differences i n  the  catch  parameters  can 

result  in  relatively  large  biases  in  the  discrete  choice  estimates.   
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426 

427 Although  the  two-stage  method corrects m uch  of  the  selection  bias,  our  Monte  Carlo  experiments  

suggest  the  remaining structure  of  the  bias  that  remains  can  have  a large  effect  on  the  discrete  

choice  parameters  and any  welfare  implications  drawn  from  the  models.  Alternatives  with  larger  

catches  are  underestimated,  while  those  with  smaller  catches  are  overestimated.  Meanwhile,  the  

full-information  model  performs  relatively  well  at  the  extremes  of  the  choice  set,  which  allows  it  

to  recover  the  discrete  choice  parameters  more  reliably.  However,  we  note  these  results  are  specific  

to the  data-generating process    we’ve    investigated here,    and additional    work is    required.    

5.3  Bounding the  efficacy  of  full information maximum  likelihood  

Finally,  one  factor  that  explains  differences  among uncorrected,  two-stage,  and full-information 

models  is  the  quantity  of  private  information  available  to the  fisher,  and specific  fisheries  may  

have  more  or  less  private  information  that  the  researcher  cannot  observer.  Therefore,  we  

investigate  the  robustness  of  the  proposed methods,  by  repeating the  Monte  Carlo  experiments  

above,  re-estimating the  model  (and correction  functions)  as  we  increase  the  private  information 

available  to the  fisher  relative  to  average  catches.  These  experiments  follow the  data-generating  

𝑓   
process  outlined  in  Section  5,  but  vary  the  standard deviation  of  𝑢𝑖𝑡𝑘   ~    𝑁(0, 𝜎).  Performance  is 

measured by  estimation  of  the  marginal  utility  of  catch  parameter  (α)  in  the  second-stage  discrete  

choice  model,  whose  true  value  is s till  equal  to  3.  

Figure  3  shows  that full  information  maximum  likelihood performs  well  even  as  we  increase  the  

variance  of  the  error  term  in  the  catch  equation  (on  the  x-axis), and that  joint  estimation  maintains  

its a dvantage  over  the  two-stage  model  as s election  bias  increases. These  data  point  is t he  median 
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𝑓   
value  from  100 Monte  Carlo  iterations,  for  each  unique  standard deviation  of  𝑢 . Unsurprisingly, 𝑖𝑡𝑘   

when  there  is n o  private  information  all  methods p erform  well  at  recovering α.  However,  both  the  

two-stage  and uncorrected methods pe rform  worse  as t he  private  signal  becomes  larger.  

While  the  two-stage  correction  estimator  corrects  most  of  the  bias  in  the  first-stage  and improves  

the  estimation  of  the  discrete  choice  parameters,  the  two-stage  model  still  overestimates  the  impact  

of  catch  on  fisher  utility  in this  example,  because  differences  in  expected catch  across  locations  

are  still  underestimated.  Again,  our  simulation  suggests  that  when  the  second-stage  equation  of  

interest  is  a  discrete  choice  problem,  small  errors  in  the  catch  equation  can  have  large  effects  in 

the  second stage,  in  particular  when  there  is  structure  in  the  bias  across  alternatives  (here  from  

underestimating differences).  In  contrast,  full-information  maximum  likelihood estimation 

behaves  well  even  as  the  variance  of  the  error  term  increases.  However,  additional  work  is  required  

to  investigate  the  robustness  of  these  results  to  other  data-generating processes  beyond this  sample  

of  data.  
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Figure  3: Bias  in  Monte  Carlo  discrete  choice  estimates  increases w ith  catch  error.  
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466 6. EMPIRICAL EXAMPLE IN THE  BERING  SEA POLLOCK  CATCHER VESSEL FISHERY 

We  demonstrate  the  importance  of  correcting for  selection  bias  with  a  hypothetical  closure  applied  

to    an    empirical    example    in    the    Bering Sea    pollock fishery    for    the    2015 summer    “B-season”.    In    this    

fishery  and year-season,  72 catcher  vessels de livered to the  inshore  processing sector,  comprising  

approximately  45 percent  of  the  total  catch  in that  year-season  (the  total  catch  includes  catcher  

vessels  that  deliver  to shore-based processors  and fish  that  are  caught  and processed at  sea).  Table  

2  suggests t hese  catcher  vessels e xhibit  considerable  variance  in  the  size  (by  gross t ons),  age,  and  

horsepower  across  the  fleet.  For  the  purposes  of  estimation,  we  normalize  vessel  characteristic  

data  such  that  the  mean  is  one  for  each  characteristic,  and catch  and distance  are  rescaled ensuring  

they  are  of  similar  magnitude  (divided by  one  hundred).  

The  choice  set  for  the  individual  fisher  is  discretized into areas  that  are  1  decimal  degree  east-west  

by  0.5 degrees  north-south, known  as  “Stat6”    areas    designated by    the    Alaska  Department  of  Fish 

and Game  (ADFG).  There  is a   tradeoff  between  a  finer  spatial  resolution  and maintaining enough 

observations i n  each  grid cell  to  identify  the  coefficients i n  the  correction  functions;  recall  that  the  

estimated probabilities  need to exhibit  considerable variation  over  different  vessels a nd tastes.  As  

opposed to states  or  cities i n  a  Roy  model  which  are  well-defined alternatives, analysts m ust  make  

judicious  choices  as  to how  to discretize  their  study  area  at sea. 20  While  standard best  practices  

have  been  elusive,  with  potential  options  varying across  fisheries  depending on  the  natural  
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20  We  thank an  anonymous r eviewer  for  helping draw  the  distinction  between  alternatives  

available  in  fishery  applications a nd that  of  Roy  models  in  labor  settings,  and for  emphasizing 

the  importance  of  robustness c hecks  in  different  choices o f  grids.  
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485 variability  of  catches  and the  definition  of  time  intervals  (see  e.g.,  Depalle  et  al.  2021),  we  note  

this  is  an  area  for  future  study.  Analysts  would be  well-served to check the  robustness  of  their  

results to  different  grid discretization  choices.  

Figure  4  maps  the  areas  visited by  fishers  in  the  B-season  of  2015, as  well  as  sample  sizes  and  

average  catches a t  each  location  with  a  minimum  of  20 observations.  Catcher  vessels t hat  operate  

in the  fishery  tend to  choose  locations  closer  to  Dutch  Harbor  and Akutan  (the  two  offloading  

ports).  These  vessels  also  participate  in  a  number  of  inshore  cooperatives  as  a  result  of  the  

American  Fisheries  Act,  and we  can  investigate  and test  whether  member  vessels  may  share  

information  (which  implies  the  amount  of  private  information  available  to  fishers  but  not  observed  

by  researchers  could be  large).21  Stat6  areas  to  the  northwest  generally  have  fewer  observations  

and smaller  average  catches,  but  the  researcher  cannot ascertain  if  differences  in  catch  are  

understated due  to  selection,  or  if  observed catches  actually  describe  the  underlying state  of  the  

stock.  

We  choose  to  examine  the  B-season  because  the  tradeoffs  across  locations  (i.e.,  between  catch  and  

distance)  are  substantially  different  in  the  winter  A-season  when  high-valued roe  enters  the  choice  

calculus o f  the  fisher  and at  which  point  vessels a re  also  restricted by  ice  cover  at  different  times.  

For    each    haul,    the    researcher    observes    the    vessel’s    starting location    (the    end point    of    the    last    
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21  For  example,  in-season  management  is d ictated by  a  cooperative  manager  who  is r esponsible  

for  communication  within the  fleet.  
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504 haul),22  the    vessel’s    characteristics,  the  location  the  vessel  chooses,  and the  weight  of  the  catch  at 

the  chosen  location.  We  note  again  that  we  abstain  from  dynamic  planning,  potentially  ignoring  

non-independence  of  repeated samples.  The  pollock catcher  vessel  fishery  tends  to  have  fewer  

hauls  within each  trip,  before  returning to  port  (compared  to  pollock  catcher-processors).  We  

speculate  that  the  separate  corrections  for  movers  versus  stayers  may  allow vessels  that  choose  a  

location  and stay  there  to  be  treated differently  from  vessels  that  are  actively  searching and  

following fish  aggregations;  however  additional  study  is  warranted.23   
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22  Here  we  abstain  from  using the  first  haul  of  a  trip as t he  previous  location  is t he  nautical  port.  

23  In  addition,  we  also  note  again  that  repeated observations  may  actually  assist  in  calculating 

cell  probabilities  in  a  two-stage  application,  potentially  providing as  many  cells a s t he  number  of  

vessels.  

https://warranted.23


 

 

 Age (years)   Horsepower   Gross tons    Catch per haul (metric tons)  

1st   quantile  35.0  1200.0  193.0  52.1 

 Mean  37.5  1901.0  372.8  95.9 

3rd   quantile  40.0  2000.0  394.0  129.2 
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513 

512 Table  2: Vessel  characteristics  in  2015 B-season.  
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514 

515 Figure  4: Number  of  hauls a nd observed average  catch  (metric  tons)  per  location.  
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516 To ascertain  if  vessels  tend to  travel  farther  distances  only  when  catches  will  be  good in  those  

locations,  we  use  the  correction  function  in  a  joint  estimation  methodology.  The  catch  equation  we  

estimate  is  similar  to  (1),  except  with  a  scalar  represented by  vessel  age  (age)  interacted with  vessel 

horsepower  (hp)  as  the  single  vessel-specific  covariate  (15),  and a  constant  𝑐𝑘    multiplied by  unity. 

Meanwhile,  we  assume  our  cost equation  (16)  is  a  function  of vessel  characteristics  (including  

gross  tonnage,  grtons)  interacted with  distance,  as we ll  as a   linear  component  on  mileage.  

𝑌𝑖𝑡𝑘   =   𝑐𝑘+    𝛽𝑘   ∗   (𝑎𝑔𝑒𝑖   ∗   ℎ𝑝𝑖 )   +   𝑢𝑖𝑡𝑘   . (15) 

𝐶𝑖𝑗𝑘   =   𝛾1   ∗   (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑘 )   +   𝛾2   ∗   (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑘   ∗   𝑔𝑟𝑡𝑜𝑛𝑠𝑖)   +    (16)  

𝛾3   ∗   (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑘   ∗   ℎ𝑝𝑖 )   +    
𝛾4   ∗   (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑘   ∗   𝑎𝑔𝑒𝑖).    

A  potential  issue  arises  if  an  intercept  exists  in  the  catch  equation.  As  Dahl  (2002)  notes,  an 

intercept  in  the  equation  of  interest is  not separately  identified from  the  constant in  the  correction 

polynomial.  Even  if  we  seek to  impose  a  restriction  such  that  the  constant  in  the  catch  equation 

equals  zero,  for  example  to  ensure  that  a  physically  non-existent  vessel  with  zero  horsepower  or  

age  must  have  zero  catches a nd that  catches r emain  non-negative,  the  constant  that  remains  in  the  

polynomial  still  absorbs  any  explanatory  power  that  would be  attributed to  the  catch  equation 

constant.  

We  use  an  extension  of  a  weighting method for  dichotomous  problems  from  Andrews  &  Schafgans  

(1998)  that works  reasonably  well  for  polychotomous  situations  in  Monte  Carlo  simulations  

(Appendix  B),  where  we  only  estimate  the  catch  equation  constant  for  a  location  as  the  probability  

of  choosing that location  goes  to unity.  The  intuition  from  Heckman  (1990)  is  that  as  the  

probability  of  choosing a  location  goes  to unity,  the  selection  bias  term  should go  to zero.  Equation 
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536 (17) illustrates  how  the  weighting  function  𝐾(𝑝𝑖𝑡𝑗𝑘   )    weights  both  the  polynomial  and the  catch 

constant  in  the  full  likelihood:  

𝑙𝑖𝑡𝑗𝑘   (17 

2   𝑛   
   (�̃�2𝜋−

2 −Σ 𝑖𝑡𝑘   − 𝐾(𝑝𝑖 𝑘 𝑘 − 𝛽 ̃
𝑡𝑗   )𝑐 𝑘 ∗ (𝑎𝑔𝑒𝑖 ∗ ℎ𝑝𝑖 ) − (1 − 𝐾(𝑝𝑖𝑡𝑗𝑘   ))𝜂(𝑀𝑖𝑡𝑗𝑘   , 𝑀𝑖𝑡𝑗𝑘   , 𝑝𝑖𝑡𝑗𝑘   , 𝜷𝑝𝑟𝑜𝑏   ))   )  

=   (   𝑛 p [   2 ])
𝜎   ex    

𝑐𝑎𝑡𝑐ℎ   2𝜎𝑐𝑎𝑡𝑐ℎ   

𝛼 𝛾   exp   ( ⁄𝜎   ∗ (𝑐𝑘 + 𝛽𝑘 ∗ (𝑎𝑔𝑒𝑖 ∗ ℎ𝑝𝑖 )) −   ⁄   (𝑍𝑗𝑘 ))
    𝑠𝑐𝑎𝑙𝑒   𝜎𝑠𝑐𝑎𝑙𝑒   

∗ ( ) 
∑𝑚   =𝑀   𝛾   

𝑚=1   exp   𝛼( ⁄𝜎   ∗ (𝑐  + 𝛽   (𝑎𝑔𝑒
   𝑚 𝑚 ∗ 𝑖 ∗ ℎ𝑝𝑖 )) −   ⁄ 

𝑠𝑐 𝜎 (𝑍 ))  
𝑎𝑙𝑒 𝑠𝑐𝑎𝑙𝑒   𝑗𝑚

𝑠. 𝑡.        
𝑝

(   ) =   1 − exp (−   𝑖𝑡𝑗𝑘   
𝐾 𝑝

𝑖𝑡𝑗𝑘   
). 

𝑏𝑤−𝑝𝑖𝑡𝑗𝑘   

The  weighting  function  we  use  is  suggested in  Andrews  and Schafgans  (1998),  where  we  choose  

a  bandwidth  of  unity.  Note  a  restriction  of  𝑐𝑘   = 0    still  requires  the  weighting if  the  restriction  is  

to  hold.  While  previous  methods  would allow the  recovery  of  the  returns  from  vessel  gross  tons  

parameter,  here  we  can  recover  levels  and estimates  of  corrected catches  at  different  locations  as  

well,  and we  are  unaware  of  previous  applications  of  this  method to  specifically  polychotomous  

models.  

Recall  that  we  have  normalized vessel  characteristics  to  unity,  and therefore  the  marginal  disutility 

of  distance  evaluated at  the  mean  can  be  written  as  the  sum  of  the  cost function  parameters.  In  

Table  3  we  find full-information  estimation  with  correction  infers  a  smaller  marginal  utility  of  

catch,  as we ll  as a   smaller  marginal  disutility  of  distance,  and the  ratio  of  catch  to distance  is b oth 

smaller  and significantly  different  compared to  uncorrected  estimates24 .  While  we  cannot  directly  
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24  The  standard errors f or  the  disutility  of  distance  are  calculated using the  delta  method.  Taking 

the  ratio  of  utility  from  catch  to  disutility  from  distance  accounts f or  the  unknown  scale  

parameter.  A  full  suite  of  parameter  estimates o f  the  FIML  model  can  be  found in  Appendix C.  
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550 compare  likelihoods  and model  criterion  as  the  underlying data  is  not the  same  (the  full  information 

model  also  includes  the  likelihood for  the  catch  equation),  we  can  compare  likelihoods  associated 

𝛼 𝛾   
exp( ⁄𝜎   ∗𝑋𝑖 ′𝛽𝑘−  ⁄𝜎 (𝑍𝑗𝑘))     

with  the  choice  probabilities  (   𝑠𝑐𝑎𝑙𝑒 𝑠𝑐𝑎𝑙𝑒
)𝛾 ,  where  the  full  information  model  

   𝛼 ∑𝑚=𝑀
𝑚=1   exp( ⁄𝜎   ∗𝑋𝑖 ′𝛽𝑚−  ⁄𝜎  (𝑍 )) 

𝑠𝑐𝑎𝑙𝑒   𝑠𝑐𝑎𝑙𝑒   𝑗𝑚

maximum  log-likelihood is  larger  (-1816.83  versus  -1820.30).  

When  we  do  not  include  a  correction  for  selection,  we  infer  larger  predicted catches  at  locations  

that  require  larger  travel  costs,  such  that  tradeoffs  between  locations  will  be  underestimated.  Figure  

5  illustrates  that  uncorrected predicted catches  are  very  similar  across  all  locations,  including those  

not visited often  in  the  northwest (which  are  larger  compared to the  minimum  predicted catch).  

Vessels  are  only  willing to go  to locations f urther  away  when  catches  are  especially  good,  or  when 

catches  are  poor  elsewhere,  biasing predicted catches  in  those  locations  upwards.  To  show this,  

we  can  test whether  our  approximation  of  the  conditional  error  is  significantly  different  from  zero.  

We  also  can  directly  compare  likelihoods to   a  joint  model  with  no  correction  function,  which  is  a  

nested model.  

Table  3  shows  a  likelihood ratio  test rejects  the  null  (no  correction)  model.  Correction  functions  

for  each  location,  as  well  as  statistical  significance  of  individual  correction  functions  can  be  found  

in  Appendix  D.  Seven  out of  10 of  the  correction  functions  enter  significantly  at  the  median 

probability.  These  results  suggest  that selection  bias  is  of  empirical  concern  in  this  fishery.  

Interestingly,  Table  3  also  shows  the  pseudo  R2  of  both  models  are  very  similar,  which  implies  a  
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570 model with reasonable fit25  can still estimate inaccurate welfare impacts and incorrect  predicted 

catches. 571 

572 

25  Defined  as a   percentage  as t he  starting log-likelihood  less t he  fitted,  divided by  the  starting. 

McFadden  (1977)  notes  that  values o f  0.2-0.4 are  reasonably  well  fit  for  the  pseudo R2.  



 

 

   α   𝜸𝟏   𝜸𝟐   𝜸𝟑   𝜸𝟒  𝚺𝛄    Choice log-

likelihood  

FIML   3.49  1.09 -0.25 -0.44 -5.12 -4.71 -1816.83 

 SE  0.78  0.80  0.19  0.32  0.75  0.14 

 Uncorrected  8.31 -3.96  0.10 -0.96 -0.86 -5.68 -1820.30 

 SE  0.63  1.14  0.30  0.45  1.04  0.15 

Model statistics  FIML     Joint with no 

correction 

 Joint log-likelihood  -3123.40 -3262.64 

AIC   6338.80  6557.28 

AICc   6340.95  6557.55 

 BIC  6597.69  6647.33 

Pseudo R2  0.26  0.23 

      LR test (H0: joint estimation with no  278.47 

    correction; dof = 30) 
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573 Table  3: Discrete  choice  parameter  estimates a nd model  statistics.  
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575 

Figure  5: Predicted catches.  
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577 In  addition,  absolute  catches  are  predicted to  be  larger  under  the  uncorrected model  as  well.  

Average  catches  in  the  FIML  model  are  57  metric  tons,  with  a  standard deviation  of  16,  while  

average  catches  in  the  uncorrected model  are  both  larger  and exhibit  less  variance  (82,  standard  

deviation  6).  A  full  table  of  predicted catches  can  be  found in  Appendix  C: Table  of  predicted 

catches.  These  results  overestimate  the  quantity  of  fish  in the  sea,  along with  misestimating welfare  

effects.  Fishers  and regulators  often  arrive  at  different  conclusions  as  to the  health  of  fishery  stocks,  

and selection  by  the  fisher  can  be  one  possible  reason,  as  fishers  tend to visit  locations  where  

fishing is goo d and catches a re  bountiful.  

Finally,  we  can  use  the  log-sum  formula  (Train  2009)  to  calculate  percentage  welfare  changes  

from  a  hypothetical  spatial  closure.  The  enclosure  in  Figure  5  delineates  the  areas i n  the  choice  set  

that  overlap with  the  Chinook Salmon  Savings  Area  (CSSA)  as  defined by  Amendment  58 

(2000)26 .  The  CSSA  was  closed in  the  B-season  after  September  15th  if  a  fixed limit  of  Chinook 

salmon  bycatch  was  attained.  This  CSSA  became  a  back-up regulation  after  rolling hotspot 

closures  became  regulator  measures  in the  fishery  in 2006 and the  closure  was  subsequently 

removed in  2011 when  Chinook catch  limits  and other  bycatch  reduction  measures  were  

implemented through  Amendment  91  to the  BSAI  FMP.  We  show the  welfare  loss to  the  fleet  if  a 
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26  The  Chinook Salmon  Savings  Area  actually  extends a n  additional  0.10 decimal  degrees s outh  

into  Stat6 areas 655409  and 655401;  however,  for  the  purposes o f  this  hypothetical  illustration  

we  only  examine  closing intact  Stat6 areas.  Also  note  that the  CSSA  is  larger  than  the  shown  

enclosure,  which  only  represents t he  areas i n  the  choice  set  that overlap with  the  CSSA.  
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594 hypothetical 2015 summer season-long closure had been implemented, in Figure 6, faceted by     

vessel horsepower. 

Welfare  losses  are  much  larger  under  full-information  estimation  than  the  uncorrected  model,  

while  the  difference  increases  with  horsepower.  In  addition,  we  note  that absolute  welfare  losses  

tend to decrease  as  vessel  horsepower  increases,  consistent  with  previous  findings  (Haynie  & 

Layton  2010).  These  vessels  have  more  fishing power  and size,  and spend more  time  fishing on  

trips  where  others  may  be  limited by  keeping fish fresh  enough  to deliver  (Watson  and Haynie  

2018).  

Because  catches  outside  the  hypothetical  spatial  closure  are  very  similar  and predicted to  be  larger  

under  the  uncorrected model,  the  welfare  impact  of  the  Chinook salmon  savings  area  is  

underestimated.  A  spatial  closure  has  very  little  effect  on  welfare  in  the  uncorrected model  as  

catches  are  predicted incorrectly  to  be  similar  everywhere.  The  correction  in  the  full-information 

model  infers  that  locations  that  are  infrequently  visited exhibit  an  upwards bi as i n  predicted catch,  

and vessels  only  tend to  visit  those  locations  when  fishing is  good.  The  researcher  would  

incorrectly  believe  the  next-best  options  for  fishers  are  relatively  similar  to  catches  within the  

hypothetical  closure,  and therefore  inaccurately  estimate  smaller  forgone  benefits  
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613 

614 Figure  6: Welfare  loss by   vessel  horsepower  from  hypothetical  spatial  closure  of  the  Chinook 

Salmon  Savings A rea  based on  the  2015 summer  Bering Sea  pollock catcher  vessel  fishery.  615 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45 

616 7. DISCUSSION 

This  paper  illustrates  how private  information  available  to  the  fisher  and unknown  to  the  researcher  

is  not accounted for  in  standard  catch  expectation  proxies c reated by  researchers  in  fisher  discrete  

choice  models.  Because  fishers  are  more  likely  to  choose  locations  with  larger  catches,  researchers  

are  also  more  likely  to observe  large,  positive  catch  deviations  when  a  particular  area  is  chosen. 

An  empirical  example  in  the  Bering Sea  pollock fishery  shows  that fishers  only  visit  locations  

farther  away  when  fishing in  those  areas  is  relatively  good,  which  underestimates  the  welfare  

impacts  from  a  hypothetical  spatial  closure.  

We  suggest  an  extension  to the  Dahl’s    (2002)  correction  function  method by  jointly  estimating the  

corrected catch  equation  with  the  polychotomous  discrete  choice  problem,  in  order  to  correct  the  

selection  bias  that  occurs  in  catch  expectation  proxies  due  to  non-randomly  sampled data.  Using a  

Monte  Carlo  experiment,  we  show how full  information  maximum  likelihood estimation  can  purge  

the  bias f rom  predictions  of  catch,  which  allows  the  researcher  to  correctly  infer  how fishers  trade  

off  expected revenues  and costs.  We  find that  while  the  two-stage  method corrects  much  of  the  

selection  bias,  the  structure  of  the  bias  that  remains  can  have  a  large  effect  on  the  discrete  choice  

parameters.  Applications  where  the  second-stage  equation  is  also  the  discrete  choice  problem  lend  

themselves  well  to  use  a  full-information  model,  and we  show that simultaneous  estimation 

performs  well  in  correction  at the  extremes  of  the  choice  set.  By  applying a  weighting method  

(Andrews  &  Schafgans  1998)  to our  polychotomous  application,  we  are  also  able  to recover  the  

intercept  in  our  first-stage  catch  equation.  While  levels  in  the  first  stage  typically  cannot  be  

identified  in  polychotomous  models  correcting for  selection,  from  a  practical  perspective  it  is  

broadly  important in  order  to  understand  the  health of  fishery  stocks.  
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639 

640 Our  methods  explicitly  acknowledge  that  the  fisher  has  information  not known  to  the  researcher  

when  the  fisher  makes  a  decision  where  to  fish,  and the  sample  of  catches  the  researcher  uses  to 

construct catch  expectation  proxies  is  selected by  the  fisher  with  the  intention  of  increasing their  

catch  and maximizing their  utility.  This  can  occur  when  the  availability  of  fish  varies  over  time:  

for  example,  a  skillful  captain  may  be  able  to  successfully  follow an  agglomeration  of  fish  across  

space,  or  fishers  may  share  information  in  a  way  a  researcher  cannot  observe. Therefore,  the  

researcher  would tend to observe  catches a t  certain locations w hen  the  fishing is goo d.  

Incorrectly  predicting the  spatial  opportunities  for  fishing implies  researchers  will  underestimate  

the  welfare  effects  from  policies  such  as  spatial  closures.  When  relative  differences  across  

locations  are  underestimated,  a  researcher  would inaccurately  believe  the  next-best  options  for  

fishers  are  close  substitutes.  In  reality,  the  researcher  cannot  observe  catches  at  locations  the  fisher  

does  not  choose,  and the  fisher  chooses i nfrequently  visited locations  only  when  they  have  private  

information  the  catches w ill  be  large  there.  

These  methods m ay  be  extended to any  polychotomous c hoice  problem  that  requires c onstructing  

proxies  for  unobserved alternatives  and are  relevant  to  the  broader  literature  examining self-

selected data;  for  example,  examining how migration  flows  are  affected by  expected wages  across  

geographic  regions.  We  note  that the  results  we  present  are  a  function  of  the  data  and fishery  we  

choose  to  investigate.  The  methods  presented are  agnostic  to  the  nature  and sign  of  the  bias,  and if  

no  bias  exists,  the  polynomial  terms  can  be  jointly  tested under  the  null  that  the  expected 

conditional  error  is e qual  to zero.  
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662 

663 Finally,  this  paper  uses  a  relatively  stylized model  that does  not  account  for  state  dependence  or  

dynamic  decision-making,  and treats  the  catch  expectations  associated with  all  hauls  within  one  

season  of  fishing as  coming from  the  same  choice  set.  An  avenue  for  future  work  is  to examine  

how the  correction  function  works  with  more  robust  constructions  of  expected catch,  such  as  

weighted averages t hat  use  historical  catches o f  different  time  series  lengths a nd spatial  sizes,  and  

to  investigate  the  magnitude  of  unobserved heterogeneity  across  various  fisheries.  Because  the  

polynomial  function  used to approximate  the  conditional  error  is  straightforward to  add to any  

linear  relationship,  and can  be  used to test whether  selection  actually  occurs  in  a  given  set  of  data,  

the  methods  outlined here  are  relevant  to  a  large  number  of  fisheries  and econometric  problems.  

Models  that  do  not test  and correct  for  selection  bias  risk incorrectly  inferring how fishers  make  

tradeoffs  between  catches  and costs  and underestimating the  impacts  from  spatial  policies  that 

affect    the    fisher’s    choice    set.     
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795 APPENDIX A:  THE DIRECTION AND MAGNITUDE OF THE BIAS  IN DISCRETE CHOICE  ESTIMATES  

Another  factor  that impacts p otential  bias i n  estimated  expected catches,  and then  estimates o f  the  

discrete  choice  parameters,  is  performance  in  smaller  samples.  A  commonality  in  the  Monte  Carlo  

experiments  above  are  a  large  number  of  samples  at  each  starting location  (with  1000 observations  

at each  location).  The  exact  direction  of  the  selection  bias  can  vary  upwards  or  downwards  

however,  and we  demonstrate  here  the  dependence  on  sample  size,  and how the  direction  of  the  

bias  in  the  marginal  utility  of  catch    (α)    can    be    explained by    inaccuracy    in    the    parameter    estimates    

in  the  catch  equation,  in  conjunction  with  how similar  locations a re.   

We  summarize  two implications  from  the  simulations  in  this  appendix: the  first  is  that  even  with 

an  arbitrarily  large  number  of  observations,  the  researcher  still  underestimates  differences  across  

locations  and overestimates c atches  in  absolute  terms.  Due  to  selection  these  estimates a re  biased  

in any  finite  sample.  The  second implication,  however,  is  that  when  the  number  of  observations i s  

small  these  estimates  are  also  inaccurate,  and it  is  more  likely  the  researcher  can  incorrectly  predict  

the  ordinal  ranking of  locations,  such  that  relatively  unproductive  locations  have  larger  catches  

than  productive  locations,  which  is  exacerbated when  locations  are  relatively  similar  to  each 

other.27  The  latter  impacts t he  direction  of  the  bias  in  the  marginal  utility  of  catch.  

First,  Figure  7  plots  the  discrete  choice  estimates  when  there  are  only  100 observations  at  each 

starting location.  Unsurprisingly,  the  distribution  of  estimates  is  much  more  dispersed,  but  also  

notice    that a    proportion    of    uncorrected    α    are    also    smaller    than    the    true    value    (which  is  still  equal  
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27  The  intuition here  more  closely  follows  the  results  found  by  Morey  and  Waldman (1998),  who  investigated the  

impact  of  measurement  error  on  discrete  choice  modeling.  They  suggest  a  correction based on the  fact  that  the  

number  of  choices  observed for  a  location provides  information  on expected catches  at  that  location.  Note  however  

that  selection still  biases  the  catch and discrete  choice  estimates  in  any  finite  sample.  
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816 to 3), although the average uncorrected α remains similar to Figure 1 (when there were 1000     

observations at each starting location). 817 

818 

819 

820 Figure  7: Uncorrected discrete  choice  estimates w ith  100 observations a t  each  starting location  

(left)  versus 1000  observations ( right).  821 

822 

823 To  understand the  effect  of  a  smaller  sample,  we  illustrate  a  simplified example  with  only  two 

locations,  where  we  can  simulate  the  effect  from  introducing bias  in each  catch  parameter,  while  

holding the  other  catch  equation  parameters ( 𝛽𝑖   )  constant  at  their  true  values,  and then  estimating  

the  discrete  choice  model  using various  values  of  𝛽𝑖   .  In  Figure  8  we  re-simulate  the  discrete  choice  

estimation  to  observe  the  effect  on  the  marginal  utility  of  catch  (choices  are  not re-simulated,  but  

rather  we  insert  various v alues o f  𝛽𝑖    to  observe  the  effect).   
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Figure 8: The impact of bias in the catch equation parameters on estimates of the marginal utility 

of catch. 

First, when 𝛽1 is underestimated, a location with larger catches on average, α is initially biased 

upwards. Conversely, overestimating 𝛽2, a location with smaller catches, also biases α upwards. 

Interestingly, if instead of holding the other catch equation parameter constant, but bias in the catch 

equation parameters (𝛽𝑖 ) was in the same direction and identical across 𝛽𝑖 , there would be no bias 

in estimating α. These results are consistent with our previous Monte Carlo experiments, which 

emphasized the effect from underestimating differences across locations. 

However, as bias in the catch equation parameters increases, the sign of the effect on α eventually 

changes. Notably, the effect on the marginal utility from catch (α) changes directions at asymptotes 
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843 corresponding to  0.25  and -0.25,  respectively.28  With  only  two locations we   can  see  the  inflection 

point    in    the    sign    of    the    bias    in    α    corresponds    to when    the    researcher    incorrectly    changes    the    ordinal 

ranking of  the  locations  by  predicted catch.  Specifically,  the  inflection  point  occurs  when  the  

researcher  overestimates  unproductive  locations  to the  extent  they  believe  the  expected returns  are  

larger  than  productive  locations.   

The  ordinal  ranking of  locations i s im portant  because  if  the  researcher  observes  vessels  abstaining  

from  visiting unproductive  locations,  but  also  incorrectly  predicts  large  catches  due  to sampling  

variability,  the  model  will  infer  vessels  must  suffer  disutility  from  larger  catches.  This  has  the  

effect    of    changing the    sign    on    estimates    of    the    marginal    utility    from    catch    (α).    Differences  across  

locations  are  no  longer  underestimated,  but  rather  the  ordinal  ranking of  locations  by  expected  

catch  has  changed - locations  with  small  catches  are  estimated to  have  large  catches,  and vice  

versa.  These  results  are  particularly  stark  with  only  two locations,  but  we  can  see  similar  patterns  

with  four  locations b elow.  

The  ordinal  ranking of  locations  tends  to be  incorrect when  the  parameter  estimates  in  the  catch  

equation  are  inaccurate,  such  as  when  the  researcher  has  few observations,  or  when  locations  are  

similar  a  smaller  bias  is s ufficient  to  change  the  ordinal  ranking of  locations.  Then,  the  researcher  

would observe  unproductive  locations  with  larger  absolute  catches  than  productive  locations  due  

to chance  (i.e.  sampling variability).  Bias  from  selection  therefore  has  two effects  –    not only  are  

differences  between  expected catches  across  locations  underestimated,  but  this  also  increases  the  

likelihood that  sampling variability  might  change  the  ordinal  ranking of  locations.    
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28  The  asymptotes  occur  because  when catches  are  predicted to  be  the  same  across  both locations,  the  model  cannot  

identify  the  marginal  utility  from  catch.  
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865 

866 Notably,  recall  that  the  estimates i n  our  Monte  Carlo experiments  exhibited an  upwards  bias i n  the  

marginal  utility  from  catch.  However,  we  are  able  to  use  a  large  number  of  observations  and choose  

a  data-generating process  where  the  differences  in  average  catches  across  locations  are  relatively 

large.  An  example  such  as  Figure  8  shows  that  if  observed catches a cross  locations a re  similar,  in 

a  different  fisheries  context,  and the  researcher  does  not  observe  many  samples,  it  would be  

possible  for  the  marginal  utility  from  catches to  be  biased downwards.  

We  also  repeat  the  experiment  with  four  locations.  Again,  we  simulate  the  effect  from  introducing  

bias  in  each  catch  parameter,  while  holding the  other  catch  equation  parameters  (𝛽𝑖   )  constant  at 

their  true  values.  We  re-simulate  the  discrete  choice  estimation  to observe  the  effect  on  the  

marginal  utility  of  catch  (choices a re  not  re-simulated,  but  rather  we  insert  various  values o f  𝛽𝑖    to 

observe    the    effect).    We    will    refer    to    locations    with    larger    average    catches    as    “productive”    

locations,    and locations    with    smaller    average    catches    as    “unproductive”    locations.    

First,  when  we  underestimate  𝛽𝑖    for  productive  locations,  the  marginal  utility    from    catch    α    is    

initially  biased upwards.  For  example,  the  first  row of  Figure  9  shows  that  underestimating 𝛽1    

results    in    estimates    of    α    greater  than  the  true  value,  when  the  bias r anges  from  0 to approximately  

-0.2.29  Conversely,  overestimating unproductive  locations  (e.g.  overestimating  𝛽4)    also    biases    α   

upwards.  
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29  Recall  that  𝛼𝑡𝑟𝑢𝑒   =   3.   



 

 

 

 

 

 

 

 

 

 

 

 

58 

886 

887 

888 Figure  9: Bias  in  catch  equation  parameters.  

889 

890 However,    as    bias    in    the    catch    equation    parameters    increases,    the    sign    of    the    effect    on    α    eventually    

changes.  For  example,  the  first  panel  of  Figure  9  shows  that positive  bias  in  the  unproductive  

location  corresponding with  𝛽4    has  a  positive  effect    on    α,    but    only    while    the    bias    in    𝛽4    ranges  from  

0 to  approximately  0.2.  Subsequently,  as  the  bias in   𝛽4    continues  to  increase,  the  sign  of  the  effect  

on  the  marginal  utility  from    catch    (α)    flips,    and estimates    of    α    decrease    below their    true    value: the    

bias    in    α,    as    positive    bias    in    𝛽4    increases,  is c oncave.   
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897 Again,  there    is    an    inflection    point    in    the    sign    of    the    bias    in α    when    the    researcher    incorrectly    

changes t he  ordinal  ranking of  the  locations by   predicted catch.  We  can  see  this  in  the  second row  

of  Figure  9,  by  investigating a  data-generating process w here  the  true  differences a cross l ocations  

are  more  disparate.  There,  a  larger  bias  (in  absolute  value)  in  𝛽𝑖    is  required before  the  ordinal  

ranking of    locations    changes,    and thus    before    the    sign    of    the    bias    in    α    changes    direction.    
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     Table 4: Catch equation with error. 

Location   Estimated parameters  

𝒄𝟏  7.47    

𝒄𝟐  7.44    

𝒄𝟑  7.47    

𝒄𝟒  7.73    

𝜷𝟏  0.93    

𝜷𝟐  0.95    

𝜷𝟑  0.96    

𝜷𝟒  0.91    

   𝜶  2.75 

 𝜸   -0.13 

  Standard error 

 0.19 

 0.19 

 0.19 

 0.19 

 0.05 

 0.05 

 0.05 

 0.05 

 0.14 

 0.00 

 True parameters  

 1.00 

 3.00 

 5.00 

 7.00 

 1.50 

 1.25 

 1.00 

 0.75 

 3.00 

-1.00 

913
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903 APPENDIX B:  MONTE CARLOS WITH  INTERCEPT  

The  experiments  below follow the  same  as  presented in  the  body  of  the  paper,  except  with  the  

inclusion  of  intercepts  in  the  catch  equations,  whose  true  parameters  are  listed in  the  tables.  The  

presented estimates  are  the  median  from  100 iterations.  We  also  estimate  the  utility  of  catch  𝜶    and  

disutility  of  distance  𝜸    here,  such  that  we  should compare  the  ratios  of  𝜶    to  𝜸    as  both  are  

proportional  to  some  unknown  scale  parameter.  In  Table  4  we  see  that  when  we  estimate  the  catch 

equation  with  error,  and use  those  predicted catches  in  the  choice  model,  the  ratio  of  𝜶/𝛾    is  much 

larger  than  the  true  value  of  -3.  
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Location   Estimated parameters    Standard error  True parameters  

  𝒄𝟏  1.55  0.68  1.00 

  𝒄𝟐  3.60  0.45  3.00 

  𝒄𝟑  5.63  0.26  5.00 

  𝒄𝟒  7.49  0.18  7.00 

  𝜷𝟏  1.52  0.09  1.50 

  𝜷𝟐  1.26  0.06  1.25 

  𝜷𝟑  1.01  0.05  1.00 

  𝜷𝟒  0.78  0.04  0.75 

   𝜶  0.46  0.05  3.00 

 𝜸   -0.14  0.00 -1.00 
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914 Table  5: Full  information  maximum  likelihood with  corrected catch.  

915 

916 If  we  use  the  weighting function  in  order  to identify  the  intercepts  in  Table  5,  we  find that while  

the  model  performs  much  better,  we  are  still  unable  to  completely  purge  the  bias  from  the  catch 

constants.  Better  performance  might  be  found in  a  different  choice  of  weighting function  or  

bandwidth,  which  we  leave  to further  study.  However,  we  do note  that because  the  bias  enters  each 

location  similarly  (upwardly  biased by  roughly  0.50),  it  mostly  falls  out of  the  choice  component,  

the  returns f rom  vessel  gross  tons  remain  accurately  estimated,  and the  ratio  of  𝜶/𝛾    is  also  similar  

to the  true  value  (-3.28 vs.  -3).  
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924 APPENDIX B:  FIML  MODEL FULL ESTIMATES 

Coef. St. Err. T-stat. 

Marginal utility from catch 3.49 0.78 4.46 

Catch beta 1 0.18 0.11 1.63 

Catch beta 2 0.67 0.03 25.05 

Catch beta 3 0.75 0.02 39.30 

Catch beta 4 0.56 0.06 9.98 

Catch beta 5 0.61 0.03 18.66 

Catch beta 6 0.44 0.05 8.29 

Catch beta 7 0.68 0.04 16.04 

Catch beta 8 0.67 0.05 12.84 

Catch beta 9 0.55 0.09 6.38 

Catch beta 10 0.67 0.09 7.17 

Polynomial constant 1 1.16 0.32 3.68 

Polynomial constant 2 0.45 0.11 4.22 

Polynomial constant 3 0.13 0.11 1.22 

Polynomial constant 4 0.68 0.15 4.43 

Polynomial constant 5 0.34 0.17 2.01 

Polynomial constant 6 0.11 0.26 0.42 

Polynomial constant 7 0.32 0.21 1.48 

Polynomial constant 8 -0.26 0.25 -1.02 

Polynomial constant 9 0.62 0.45 1.39 

Polynomial constant 10 -0.14 0.47 -0.29 

Polynomial 1st-order 1 -8.51 6.40 -1.33 

Polynomial 1st-order 2 -1.37 0.87 -1.58 

Polynomial 1st-order 3 -0.40 0.77 -0.52 

Polynomial 1st-order 4 -2.11 1.48 -1.43 

Polynomial 1st-order 5 1.03 1.56 0.66 

Polynomial 1st-order 6 10.98 3.33 3.30 

Polynomial 1st-order 7 -7.24 4.63 -1.56 

Polynomial 1st-order 8 2.25 2.88 0.78 

Polynomial 1st-order 9 -4.27 3.56 -1.20 

Polynomial 1st-order 10 -1.68 3.63 -0.46 

Polynomial 2nd-order 1 40.24 42.40 0.95 

Polynomial 2nd-order 2 3.86 1.51 2.56 

Polynomial 2nd-order 3 4.62 1.27 3.65 

Polynomial 2nd-order 4 9.87 2.93 3.37 

Polynomial 2nd-order 5 1.55 3.16 0.49 

Polynomial 2nd-order 6 -24.97 10.06 -2.48 

Polynomial 2nd-order 7 19.27 7.94 2.43 

Polynomial 2nd-order 8 0.79 5.22 0.15 

Polynomial 2nd-order 9 9.84 5.95 1.65 
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925 

Polynomial 2nd-order 10 7.27 6.57 1.11 

Disutility from distance 

linear miles 

1.09 0.80 1.37 

Disutility from distance miles 

and gross tons 

-0.25 0.19 -1.38 

Disutility from distance miles 

and horsepower 

-0.44 0.32 -1.38 

Disutility from distance miles 

and age 

-5.12 0.75 -6.80 

Catch function variance term 0.46 0.01 62.43 



 

 

     Table 6: Predicted catches between full information and uncorrected models.  

ADFG Stat6 area   FIML (metric tons/100)   Uncorrected (metric tons/100)  

 655401  0.18  0.74 

 655409  0.66  0.88 

 655430  0.74  0.88 

 655500  0.55  0.79 

 665430  0.60  0.83 

 665500  0.44  0.74 

 675500  0.66  0.83 

 685530  0.65  0.77 

 695600  0.54  0.85 

 705600  0.66  0.86 
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926 APPENDIX C:  TABLE OF PREDICTED CATCHES 
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929 APPENDIX D:  CORRECTION FUNCTIONS  

Figure  10  below illustrates  the  correction  function  for  each  location.  Note  that the  shape  of  the  

corrections  is  explained by  the  weighting function  that allows  for  identification  of  levels  of  catch 

at  each  location.  Here,  portions  that  are  statistically  significantly  different  from  zero  are  

highlighted in  bold.  
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936 Figure  10: Correction  functions a t  each  location.  
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938 In  addition,  the  statistical  significance  of  each  segment  suffers  when  the  support for  the  function 

is  lacking. Figure  11  shows  that  the  number  of  observations  tends  to match  well  with  certainty  

around the  correction  function  estimates.  In  addition,  we  generally  have  a  good range  of  

probabilities  to estimate  the  correction  function  for  each  location,  with  the  exception  of  ADFG  

areas 655401  and 665500.  
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945 Figure  11: Number  of  observations g iven  the  probability  of  choosing a  location.  
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